Постоянная и случайная составляющие случайной переменной

Рис. A.5.

Рис. A.4.

Рис. A.3.

Рис. A.2.

Рис. A.1.

К сожалению, анализ часто проводится для непрерывных случайных величин, которые могут принимать бесконечное число значений. Поскольку невозможно представить себе «пластичную массу», разделенную на бесконечное число частей, используем далее другой подход.

Проиллюстрируем наши рассуждения на примере температуры в комнате. Для определенности предположим, что она меняется в пределах от 55 до 75° по Фаренгейту, и вначале допустим, что все значения в этом диапазоне равновероятны.

Поскольку число различных значений, принимаемых показателем температуры, бесконечно, здесь бессмысленно пытаться разделить «пластичную массу» на малые части. Вместо этого можно «размазать» ее по всему диапазону. Поскольку все температуры от 55 до 75° F равновероятны, она должна быть «размазана» равномерно, как это показано на рис. A.2.

В этом примере, как и во всех остальных, мы будем полагать, что «пластичная масса размазана» на единичной площади. Это связано с тем, что совокупная вероятность всегда равняется единице. В данном случае наша «масса» покрыла прямоугольник, и поскольку основание этого прямоугольника равно 20, его высота определяется из соотношения:

, (A.10)

так как произведение основания и высоты равно площади. Следовательно, высота равна 0,05, как это показано на рисунке.

Найдя высоту прямоугольника, мы можем ответить на вопросы типа: с какой вероятностью температура будет находиться в диапазоне от 65 до 70°F? Ответ определяется величиной «замазанной» площади (или, говоря более формально, совокупной вероятностью), лежащей в диапазоне от 65 до 70°F, представленной заштрихованной фигурой на рис. A.3. Основание заштрихованного прямоугольника равно 5, его высота равна 0,05 и, соответственно, площадь – 0,25. Искомая вероятность равна 1/4, что в любом случае очевидно, поскольку промежуток от 65 до 70°F составляет 1/4 всего диапазона.

Высота заштрихованной площади представляет то, что формально называется плотностью вероятности в этой точке, и если эта высота может быть записана как функция значений случайной переменной, то эта функция называется функцией плотности вероятности. В нашем примере она записывается как , где – температура, и

. (A.11)

В качестве первого приближения функция плотности вероятности показывает вероятность нахождения случайной переменной внутри единичного интервала вокруг данной точки. В нашем примере эта функция всюду равна 0,05, откуда вытекает, что температура находится, например, между 60 и 61°F с вероятностью 0,05.

В нашем случае график функции плотности вероятности горизонтален, и ее указанная интерпретация точна, однако в общем случае эта функция непрерывно меняется, и ее интерпретация дает лишь приближение. Далее мы рассмотрим пример, когда эта функция непостоянна, поскольку не все температуры равновероятны. Предположим, что центральное отопление работает таким образом, что температура никогда не падает ниже 65°F, а в жаркие дни температура превосходит этот уровень, не превышая, как и ранее, 75°F. Мы будем считать, что плотность вероятности максимальна при температуре 65°F и далее она равномерно убывает до нуля при 75°F (рис. A.4).

Общая «замазанная» площадь, как всегда, равна единице, поскольку совокупная вероятность равна единице. Площадь треугольника равна половине произведения основания на высоту, поэтому получаем:

, (A.12)

и высота при 65°F равна 0,20.

Предположим вновь, что мы хотим знать вероятность нахождения температуры в промежутке между 65 и 70°F. Она представлена заштрихованной площадью на рис. A.5, и если вы немного помните геометрию, то сможете проверить, что она равна 0,75. Если вы предпочитаете процентное измерение, то это означает, что с вероятностью 75% температура попадет в диапазон 65-70°F и только с вероятностью 25% – в диапазон 70-75°F.

В данном случае функция плотности вероятности записывается как , где

. (A.13)

Прежде чем продолжить изложение, упомянем о хорошей и плохой новостях. «Плохая новость» – это то, что если вы хотите рассчитать вероятности для более сложных функций с криволинейными графиками, то элементарная геометрия становится неприменимой. Вообще говоря, вы должны воспользоваться интегральным исчислением или специальными таблицами (если последние существуют). Интегральное исчисление используется также и при определении математического ожидания и дисперсии непрерывной случайной величины.

«Хорошая новость» – в том, что специальные таблицы существуют для всех функций, которые будут интересовать нас на практике. Кроме того, математическое ожидание и дисперсия имеют практически тот же смысл для непрерывных случайных величин, что и для дискретных, для них верны те же самые правила.

Часто вместо рассмотрения случайной величины как единого целого можно и удобно разбить ее на постоянную и чисто случайную составляющие, где постоянная составляющая всегда есть ее математическое ожидание. Если – случайная переменная и – ее математическое ожидание, то декомпозиция случайной величины записывается следующим образом:

, (A.14)

где – чисто случайная составляющая.

Конечно, можно было бы посмотреть на это по-другому и сказать, что случайная составляющая определяется как разность между и

. (A.15)

Из определения следует, что математическое ожидание величины равно нулю:

.

Поскольку весь разброс значений обусловлен , неудивительно, что теоретическая дисперсия равна теоретической дисперсии . Последнее нетрудно доказать. По определению,

и

.

Таким образом, может быть эквивалентно определена как дисперсия или .

Обобщая, можно утверждать, что если – случайная переменная, определенная по формуле (A.14), где – заданное число и – случайный член с и , то математическое ожидание величины равно , а дисперсия – .