Автокорреляция в остатках. Критерий Дарбина-Уотсона

Рис. 4.7.

Таблица 4.10

Таблица 4.9

Таблица 4.8

Таблица 4.7

Таблица 4.5

№ квартала, Количество правонарушений, Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 213,75
665,5 349,5
708,75 693,75 -336,75
709,375 -238,375
718,25 714,125 277,875
689,25 703,75 316,25
689,25 689,25 -299,25
660,5 674,875 -319,875
678,25 669,375 322,625
690,625 214,375
-233
690,5 687,75 -233,75

Шаг 2. Найдем оценки сезонной компоненты как разность между фактическими уровнями ряда и центрированными скользящими средними (гр. 6 табл. 4.5). Используем эти оценки для расчета значений сезонной компоненты (табл. 4.6). Для этого найдем средние за каждый квартал (по всем годам) оценки сезонной компоненты . В моделях с сезонной компонентой обычно предполагается, что сезонные воздействия за период взаимопогашаются. В аддитивной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна нулю.

Таблица 4.6

Показатели Год № квартала,
I II III IV
  213,75 349,5
-336,75 -238,375 277,875 316,25
-299,25 -319,875 322,625 214,375
-233 -233,75
Всего за -й квартал   -869 -792 814,25 880,125
Средняя оценка сезонной компоненты для -го квартала,   -289,667 -264 271,417 293,375
Скорректированная сезонная компонента,   -292,448 -266,781 268,636 290,593

Для данной модели имеем:

.

Корректирующий коэффициент: .

Рассчитываем скорректированные значения сезонной компоненты () и заносим полученные данные в таблицу 4.6.

Проверим равенство нулю суммы значений сезонной компоненты:

.

Шаг 3. Исключим влияние сезонной компоненты, вычитая ее значение из каждого уровня исходного временного ряда. Получим величины (гр. 4 табл. 4.7). Эти значения рассчитываются за каждый момент времени и содержат только тенденцию и случайную компоненту.

-292,448 667,448 672,700 380,252 -5,252 27,584
-266,781 637,781 673,624 406,843 -35,843 1284,721
268,636 600,364 674,547 943,183 -74,183 5503,117
290,593 724,407 675,470 966,063 48,937 2394,830
-292,448 649,448 676,394 383,946 -26,946 726,087
-266,781 737,781 677,317 410,536 60,464 3655,895
268,636 723,364 678,240 946,876 45,124 2036,175
290,593 729,407 679,163 969,756 50,244 2524,460
-292,448 682,448 680,087 387,639 2,361 5,574
-266,781 621,781 681,010 414,229 -59,229 3508,074
268,636 723,364 681,933 950,569 41,431 1716,528
290,593 614,407 682,857 973,450 -68,450 4685,403
-292,448 753,448 683,780 391,332 69,668 4853,630
-266,781 720,781 684,703 417,922 36,078 1301,622
268,636 651,364 685,627 954,263 -34,263 1173,953
290,593 636,407 686,550 977,143 -50,143 2514,320

Шаг 4. Определим компоненту данной модели. Для этого проведем аналитическое выравнивание ряда () с помощью линейного тренда. Результаты аналитического выравнивания следующие:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 4.7).

Шаг 5. Найдем значения уровней ряда, полученные по аддитивной модели. Для этого прибавим к уровням значения сезонной компоненты для соответствующих кварталов (гр. 6 табл. 4.7).

На одном графике отложим фактические значения уровней временного ряда и теоретические, полученные по аддитивной модели.

Рис. 4.6.

Для оценки качества построенной модели применим сумму квадратов полученных абсолютных ошибок.

.

Следовательно, можно сказать, что аддитивная модель объясняет 97% общей вариации уровней временного ряда количества правонарушений по кварталам за 4 года.

Шаг 6. Прогнозирование по аддитивной модели. Предположим, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года. Прогнозное значение уровня временного ряда в аддитивной модели есть сумма трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом,

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать порядка 395 и 422 правонарушений соответственно.

Построение мультипликативной модели рассмотрим на данных предыдущего примера.

Шаг 1. Методика, применяемая на этом шаге, полностью совпадает с методикой построения аддитивной модели.

№ квартала, Количество правонарушений, Итого за четыре квартала Скользящая средняя за четыре квартала Центрированная скользящая средняя Оценка сезонной компоненты
657,5
655,25 1,3262
665,5 1,5252
708,75 693,75 0,5146
709,375 0,6640
718,25 714,125 1,3891
689,25 703,75 1,4494
689,25 689,25 0,5658
660,5 674,875 0,5260
678,25 669,375 1,4820
690,625 1,3104
0,6643
690,5 687,75 0,6601

Шаг 2. Найдем оценки сезонной компоненты как частное от деления фактических уровней ряда на центрированные скользящие средние (гр. 6 табл. 4.8). Эти оценки используются для расчета сезонной компоненты (табл. 4.9). Для этого найдем средние за каждый квартал оценки сезонной компоненты . Так же как и в аддитивной модели считается, что сезонные воздействия за период взаимопогашаются. В мультипликативной модели это выражается в том, что сумма значений сезонной компоненты по всем кварталам должна быть равна числу периодов в цикле. В нашем случае число периодов одного цикла равно 4.

Показатели Год № квартала,
I II III IV
  1,3262 1,5252
0,5146 0,6640 1,3891 1,4494
0,5658 0,5260 1,4820 1,3104
0,6643 0,6601
Всего за -й квартал   1,7447 1,8501 4,1973 4,2850
Средняя оценка сезонной компоненты для -го квартала,   0,5816 0,6167 1,3991 1,4283
Скорректированная сезонная компонента,   0,5779 0,6128 1,3901 1,4192

Имеем

.

Определяем корректирующий коэффициент:

.

Скорректированные значения сезонной компоненты получаются при умножении ее средней оценки на корректирующий коэффициент .

Проверяем условие равенство 4 суммы значений сезонной компоненты:

.

Шаг 3. Разделим каждый уровень исходного ряда на соответствующие значения сезонной компоненты. В результате получим величины (гр. 4 табл. 4.10), которые содержат только тенденцию и случайную компоненту.

0,5779 648,9012 654,9173 378,4767 0,9908
0,6128 605,4178 658,1982 403,3439 0,9198
1,3901 625,1349 661,4791 919,5221 0,9451
1,4192 715,1917 664,7600 943,4274 1,0759
0,5779 617,7539 668,0409 386,0608 0,9247
0,6128 768,6031 671,3218 411,3860 1,1449
1,3901 713,6177 674,6027 937,7652 1,0578
1,4192 718,7148 677,8836 962,0524 1,0602
0,5779 674,8572 681,1645 393,6450 0,9907
0,6128 579,3081 684,4454 419,4281 0,8464
1,3901 713,6177 687,7263 956,0083 1,0377
1,4192 637,6832 691,0072 980,6774 0,9228
0,5779 797,7159 694,2881 401,2291 1,1490
0,6128 740,8616 697,5690 427,4703 1,0621
1,3901 661,8229 700,8499 974,2515 0,9443
1,4192 653,1849 704,1308 999,3024 0,9277

Шаг 4. Определим компоненту в мультипликативной модели. Для этого рассчитаем параметры линейного тренда, используя уровни . В результате получим уравнение тренда:

.

Подставляя в это уравнение значения , найдем уровни для каждого момента времени (гр. 5 табл. 4.10).

Шаг 5. Найдем уровни ряда, умножив значения на соответствующие значения сезонной компоненты (гр. 6 табл. 4.10). На одном графике откладываем фактические значения уровней временного ряда и теоретические, полученные по мультипликативной модели.

Расчет ошибки в мультипликативной модели производится по формуле:

.

Для сравнения мультипликативной модели и других моделей временного ряда можно, по аналогии с аддитивной моделью, использовать сумму квадратов абсолютных ошибок :

.

Сравнивая показатели детерминации аддитивной и мультипликативной моделей, делаем вывод, что они примерно одинаково аппроксимируют исходные данные.

Шаг 6. Прогнозирование по мультипликативной модели. Если предположить, что по нашему примеру необходимо дать прогноз об общем объеме правонарушений на I и II кварталы 2003 года, прогнозное значение уровня временного ряда в мультипликативной модели есть произведение трендовой и сезонной компонент. Для определения трендовой компоненты воспользуемся уравнением тренда

.

Получим

;

.

Значения сезонных компонент за соответствующие кварталы равны: и . Таким образом

;

.

Т.е. в первые два квартала 2003 г. следовало ожидать порядка 409 и 436 правонарушений соответственно.

Таким образом, аддитивная и мультипликативная модели дают примерно одинаковый результат по прогнозу.

Автокорреляция в остатках может быть вызвана несколькими причинами, имеющими различную природу.

1. Она может быть связана с исходными данными и вызвана наличием ошибок измерения в значениях результативного признака.

2. В ряде случаев автокорреляция может быть следствием неправильной спецификации модели. Модель может не включать фактор, который оказывает существенное воздействие на результат и влияние которого отражается в остатках, вследствие чего последние могут оказаться автокоррелированными. Очень часто этим фактором является фактор времени .

От истинной автокорреляции остатков следует отличать ситуации, когда причина автокорреляции заключается в неправильной спецификации функциональной формы модели. В этом случае следует изменить форму модели, а не использовать специальные методы расчета параметров уравнения регрессии при наличии автокорреляции в остатках.

Один из более распространенных методов определения автокорреляции в остатках – это расчет критерия Дарбина-Уотсона:

. (4.5)

Т.е. величина есть отношение суммы квадратов разностей последовательных значений остатков к остаточной сумме квадратов по модели регрессии.

Можно показать, что при больших значениях существует следующее соотношение между критерием Дарбина-Уотсона и коэффициентом автокорреляции остатков первого порядка :

. (4.6)

Таким образом, если в остатках существует полная положительная автокорреляция и , то . Если в остатках полная отрицательная автокорреляция, то и, следовательно, . Если автокорреляция остатков отсутствует, то и . Т.е. .

Алгоритм выявления автокорреляции остатков на основе критерия Дарбина-Уотсона следующий. Выдвигается гипотеза об отсутствии автокорреляции остатков. Альтернативные гипотезы и состоят, соответственно, в наличии положительной или отрицательной автокорреляции в остатках. Далее по специальным таблицам (см. приложение E) определяются критические значения критерия Дарбина-Уотсона и для заданного числа наблюдений , числа независимых переменных модели и уровня значимости . По этим значениям числовой промежуток разбивают на пять отрезков. Принятие или отклонение каждой из гипотез с вероятностью осуществляется следующим образом:

– есть положительная автокорреляция остатков, отклоняется, с вероятностью принимается ;

– зона неопределенности;

– нет оснований отклонять , т.е. автокорреляция остатков отсутствует;

– зона неопределенности;

– есть отрицательная автокорреляция остатков, отклоняется, с вероятностью принимается .

Если фактическое значение критерия Дарбина-Уотсона попадает в зону неопределенности, то на практике предполагают существование автокорреляции остатков и отклоняют гипотезу .

Пример. Проверим гипотезу о наличии автокорреляции в остатках для аддитивной модели нашего временного ряда. Исходные данные и промежуточные расчеты заносим в таблицу:

 

 

Таблица 4.11

-5,252 27,584
-35,843 -5,252 935,8093 1284,7
-74,183 -35,843 1469,956 5503,1
48,937 -74,183 15158,53 2394,8
-26,946 48,937 5758,23 726,09
60,464 -26,946 7640,508 3655,9
45,124 60,464 235,3156 2036,2
50,244 45,124 26,2144 2524,5
2,361 50,244 2292,782 5,574
-59,229 2,361 3793,328 3508,1
41,431 -59,229 10132,44 1716,5
-68,450 41,431 12073,83 4685,4
69,668 -68,45 19076,58 4853,6
36,078 69,668 1128,288 1301,6
-34,263 36,078 4947,856
-50,143 -34,263 252,1744 2514,3
Сумма -0,002 50,141 84921,85 37911,97

Фактическое значение критерия Дарбина-Уотсона для данной модели составляет:

.

Сформулируем гипотезы: – в остатках нет автокорреляции; – в остатках есть положительная автокорреляция; – в остатках есть отрицательная автокорреляция. Зададим уровень значимости . По таблице значений критерия Дарбина-Уотсона определим для числа наблюдений и числа независимых параметров модели (мы рассматриваем только зависимость от времени ) критические значения и . Фактическое значение -критерия Дарбина-Уотсона попадает в интервал (1,37<2,24<2,63). Следовательно, нет основания отклонять гипотезу об отсутствии автокорреляции в остатках.

Существует несколько ограничений на применение критерия Дарбина-Уотсона.

1. Он неприменим к моделям, включающим в качестве независимых переменных лаговые значения результативного признака.

2. Методика расчета и использования критерия Дарбина-Уотсона направлена только на выявление автокорреляции остатков первого порядка.

3. Критерий Дарбина-Уотсона дает достоверные результаты только для больших выборок.

 


Приложение A[6]