Капельная модель
Необходимость и классификация моделей
ГЛАВА 2. МОДЕЛИ АТОМНЫХ ЯДЕР
Атомное ядро представляет сложную многочастичную квантовую систему с сильным взаимодействием, обладающее чрезвычайно большим количеством свойств, порой противоречивых, и с теоретической точки зрения – объект исключительно сложный. Поэтому попытка создания последовательной и единой теории ядра сталкивается с целым рядом трудностей. При переходе от атома к ядру оказывается, что мы не располагаем достаточными знаниями о свойствах ядерных сил во всех деталях, необходимых для построения такой же законченной математической теории, как строение атома. Между частицами в атоме действуют электромагнитные силы, теория которых хорошо разработана и согласуется с экспериментом. Но предположив, что характер ядерных сил, действующих между нуклонами известен, остается проблема решения квантовой задачи многих тел, которая к настоящему времени не решена даже в случае трех тел. В этих условиях силы взаимодействия между нуклонами приходится подбирать путем подгонки к известным экспериментальным данным с помощью феноменологических постоянных и модельных зависимостей.
Из всего сказанного следует, что теория атомного ядра должна с необходимостью идти по пути создания ядерных моделей, предназначенных для описания выбранной совокупности ядерных свойств или явлений сравнительно простыми математическими способами с минимальным количеством определяемых параметров. Такой подход неизбежен уже потому, что природные объекты имеют бесконечное количество свойств и связей. Ценность любой модели определяется количеством необходимых параметров и возможностью предсказания новых свойств ядер или объяснения уже имеющихся. Но при этом, разумеется, любая модель обладает ограниченными возможностями и не может дать полного описания всех свойств ядра. В результате в ядерной физике приходится прибегать к большому числу моделей, приспособленных для описания ограниченного круга той или иной совокупности явлений, но которые вместе отвечают современному уровню наших знаний о ядре.
С теоретической точки зрения в основу любой модели кладут допущение о приближенной независимости какого-либо набора степеней свободы для выбранного объекта. Степени свободы можно классифицировать на одночастичные, отвечающие независимому движению отдельных нуклонов, и коллективные, соответствующие согласованному движению большого числа частиц.
Здесь будут рассмотрены две модели: капельная, основанная на коллективных степенях свободы, и оболочечная, использующая одночастичное описание движения нуклонов.
В основу капельной модели (Вейцзеккер, 1935г., Бор, 1936г.) положено сходство в поведение атомного ядра и заряженной капли жидкости. Ядра имеет достаточно четко определенный радиус R ~ A1/3 (см. формулу (1.5.2)), из чего следует практически одинаковая (не зависящая отА) концентрацию нуклонов в ядрах:
1038 см-3, | (2.2.1) |
одинаковая плотность ядерного вещества
ρ = mN ·n = 1,66·10-24·1038 ≈ 1014 г/см3 = 108 т/см3, | (2.2.2) |
и одинаковые средние расстояния между нуклонами:
см. | (2.2.3) |
Эти цифры говорят о совершенно необычном, прямо-таки потрясающем, с точки зрения макроскопических тел, состоянии ядерного вещества (например, для обычных твердых тел n » 1022см-3 , ρ » 10 г/см3, δ » 5·10-8 см).
То, что плотность ядерного вещества всех ядер постоянна, свидетельствует о его несжимаемости. Это свойство сближает ядерное вещество с жидкостью. Постоянство удельной энергии связи нуклонов в ядре углубляет аналогию. Основанием к такому предположению служит, прежде всего, тот факт, что химические силы, действующие между молекулами в жидкости, и ядерные силы, действующие между нуклонами в ядре, являются короткодействующими. Все это позволяет построить капельную модель атомного ядра, согласно которой ядро представляет сферическую каплю заряженной сверхплотной жидкости.
Основным результатом капельной модели является полуэмпирическая формула Вейцзеккера, в которую для получения лучшего согласия с наблюдаемыми величинами пришлось добавить члены, которые не связанны с моделью жидкой капли. Эта формула позволяет с хорошей точностью (< 1 %) вычислять энергию связи ядер по заданным значениямАи Z:
, | (2.1.1) |
где a1, … a5, и d - постоянные величины. Коэффициенты, a1, … , a5 подбираются таким образом, чтобы получить наилучшее согласие со значениями энергии связи для большинства всех известных ядер. Коэффициент а3 может быть вычислен теоретически (см. ниже).
Приведемих величины:
a1 = 15,75 МэВ; a2 = 17,8 МэВ; a3 = 0,71 МэВ; a4 = 23,7 МэВ;
a5 = 34 МэВ.
Рассмотрим последовательно физический смысл всех членов формулы Вейцзеккера.
Первый член а1A в этой формуле предполагает, что все нуклоны в ядре равноценны, и определяет примерно линейную зависимость энергии связи ΔW от А, отражая свойство насыщения ядерных сил, рассмотренное в §1.4 п.1. Однако, обращает внимание отличие вдвое коэффициента а1 от 8 МэВ – приблизительной величины энергии связи для большинства стабильных нуклидов (см. рис.1.4.2). Это вызвано учетом поправок на уменьшение энергии связи, которое дается вторым, третьим и четвертым членами формулы Вейцзеккера.
Второй член а2A2/3 учитывает, что не все нуклоны в ядре равноценны и дает поправку на уменьшение полной энергии связи, обусловленную тем, что часть нуклонов находится у поверхности ядра. Нуклоны в поверхностном слое не испытывают насыщения всех своих возможных связей, так как испытывают одностороннее притяжение вглубь ядра. Количество периферийных нуклонов определяется поверхностью ядра S ~, которая, в силу (1.5.2), пропорциональна A2/3.
Третий член а3·в формуле определяет взаимное кулоновское отталкивание протонов, энергия которого пропорциональна Z2/R. Кулоновские силы не испытывают насыщения, и каждый из Z протонов взаимодействует со всеми остальными Z – 1; таким образом Z(Z - 1) ≈ Z2. Коэффициент а3 может быть вычислен на основании представления о равномерном распределении электрического заряда по объему сферы радиуса R:
(2.2.5) |
Это соотношение позволяет найти коэффициент , если известна величина Rили, наоборот, подсчитать радиус ядра R по известному коэффициенту для всех ядер. Если в формуле (1.5.2) принять r0 = 1,3·10-13 см, то величина а3 = 0,66 МэВ.
Если ограничиться только этими тремя слагаемыми, следующими из капельной модели, то оказывается, что устойчивость ядра должна возрастать с увеличением числа нейтронов в ядре при заданном числе протонов. Однако экспериментальные данные указывают на иную тенденцию. Четвертый член в формуле (2.2.4), который носит название поправки на энергию симметрии, уже не следуетиз модели жидкой капли и отражает наблюдаемую в природе тенденцию к симметрии в строении ядер. Считается установленным, что при отсутствии кулоновских сил максимум удельной энергии связипри фиксированном А соответствовал бы всем ядрам с равным числом протонов Z и нейтронов N (эффект симметрии), т.е. Z = N = A/2. Это обусловлено зарядовой независимостью ядерных сил (см. §1.10), и необходимостью выполнения принципа Паули (см. §1.11) для двух нуклонов одного рода, которые имеют спин 1/2. Равное число протонов и нейтронов у легких ядер, лежащих на дорожке стабильности (см. рис. 1.1.1 и 1.1.2), когда энергия кулоновского отталкивания протонов мала, косвенно подтверждает это положение. Для компенсации расталкивающего действия кулоновских сил, величина которых ~ Z2 (см. пояснения к третьему члену формулы), у стабильных тяжелых ядер N > Z , но кулоновская энергия уже учтена в третьем члене, и поэтому четвертый член действителен также для средних и тяжелых ядер. Отклонение от равенства Z = A/2 в любую сторону ведет к уменьшению удельной энергии связи ядра (A,Z) и четвертый член в формуле должен быть отрицательным. Поэтомуразность (N - Z) необходимо возвести в квадрат и разделить на А (отнести к одному нуклону). Так как N = A - Z, то четвертый член приобретает вид a4·(A – 2Z)2/A.
Последний член в формуле (2.2.4) отражает распространенность стабильных элементов и учитывает эффект спаривания одинаковых нуклонов (см. §1.4 п.3). Ядра, у которых числа N и Z - четные (Ч-Ч ядра) имеют удельную энергию связи примерно на 1 Мэв большую, чем соседние ядра, у которых либо N, либо Z - нечетные (Ч‑Н и Н-Ч ядра). Ядра с нечетным числом и протонов, и нейтронов (Н-Н ядра) имеют наименьшую удельную энергию связи среди соседних ядер. Стабильных ядер последнего типа, как отмечалось в §1.1, известно всего четыре.В соответствии с этим величина δ в пятом члене формулы Вейцзеккера принимает три значения:
Таким образом, для четных А формула (2.2.4) двузначна.
Остановимся на некоторых следствиях из формулы Вейцзеккера. По заданным А и Z можно:
1. Вычислить массу ядра. Из формулы (1.4.11)
(2.2.6) |
если энергию связи ядра рассчитать по формуле (2.2.4).
2. Найти удельную (среднюю) энергию связи нуклона для любого нуклида.
3. Найти среднюю энергию связи (отделения) протона и нейтрона в ядре
(2.2.7) | |
(2.2.8) |
и любой группы связанных нуклонов, например α-частицы:
(2.2.9) |
Если Sα < 0, то получаем энергию α-распада.
4. Найти Z0 нуклида, устойчивого по отношению к β-распаду, для любой группы изобар. На рис. 2.2.1 представлена зависимость (2.2.6) массы ядра от Z для ядер изобаров, имеющих нечетное число нуклонов (а) и – четное число нуклонов (б). Кривые построены в соответствие с формулой (2.2.6) и их следует понимать условно, так как физический смысл имеют значения массы ядер только для дискретных значений Z. Переходы в состояния с меньшей массой показаны на рисунке стрелками. Кривая I на рис. 2.2.1 б) соответствует нестабильным относительно β-распада нечетно-нечетным ядрам. Причем некоторые из ядер могут испытывать (см. §3.5) как электронный распад, так и позитронный распад, или же Е‑захват. Изобары, лежащие на кривой II, могут иметь по несколько стабильных нуклидов, так как двойной β-распад неизвестен.
На основании формулы (2.2.6) можно получить условие устойчивости ядер относительно β-распада. Очевидно, что наиболее устойчивые изобары должны иметь минимальную массу М при заданном числе А нуклонов. Для нахожденияминимума решаем уравнение
(2.2.10) |
откуда находим
(2.2.11) |
если в формуле (2.2.4) использовать приведенные выше значения коэффициентов а1 ÷ а5. Полученное выражение (2.2.11) является, по существу, уравнением дорожки стабильности и позволяет определять Z0 для заданных А с точностью ±1. Из (2.2.11) следует, что для β-стабильных ядер при малых значениях А (легкие ядра) Z0 ≈ 0,5A, а для тяжелых (А = 238) Z0 ≈ 0,39A, что совпадает с экспериментальными данными на рис. 1.1.2.
5. Проникновение нуклона в ядро-каплю приводит из-за малой сжимаемости ядерного вещества к коллективному движению нуклонов, вызывающих деформацию ядра без изменения его объема, в результате чего оно принимает форму эллипсоида или более сложной фигуры и возможно возникновение колебаний ядерной жидкости.
6. Капельная модель позволяет построить качественную модель деления тяжелых ядер.
Наряду с отмеченными достоинствами капельной модели, перечислим и ее некоторые основные недостатки. Капельная модель учитывает коллективное взаимодействие нуклонов между собой, но совершенно не учитывает взаимодействия и свойства отдельных нуклонов. Поэтому капельная модель приводит к плавной зависимости свойств ядер от числа и состава нуклонов в ядре. Ряд свойств ядра – удельная энергия связи ядра , спин ядра, магнитный и электрический моменты изменяются периодически от числа нуклонов в ядре. Четно-четные ядра в основном состоянии имеют нулевые спин, магнитный и электрический моменты. Капельная модель не объясняет наличия магических чисел, не дает правильного описания возбужденных уровней легких и средних ядер, не объясняет асимметрию деления ядер, хотя и используется довольно плодотворно в теории деления ядер.