Ковка и штамповка

Способы обработки металлов давлением по производственному назначению подразделяют на два вида.

1. Металлургические, предназначенные для получения заготовок постоянного поперечного сечения (прутков, проволоки, листов и др.), применяемых для изготовления деталей с помощью предварительного пластического формоизменения и обработки резанием. Основными металлургическими способами обработки давлением являются про­катка, волочение и прессование.

2. Машиностроительные, предназначенные для получения деталей или заготовок, имеющих форму и размеры, приближенные к форме и размерам деталей; в машиностроении основными способами по­лучения заготовок обработкой давлением являются ковка и штам­повка.

Прокатка (рис. 3.10, а) заключается в обжатии заготовки 2 между вращающимися валками 1.

Прессование (рис. 3.10, 6) заключается в продавливании толкате­лем 4 заготовки 2, находящейся во втулке 3, через отверстие матри­цы 1.

Волочение (рис. 3.10, в, г) заключается в протягивании заготов­ки 2 через сужающуюся полость матрицы 1; при этом поперечное сечение заготовки принимает форму поперечного сечения отверстия матрицы.

Штамповкой (рис. 3.10, д) изменяют форму и размеры заготовки с помощью специального инструмента — штампа.

Листовой штамповкой получают плоские и пространственные детали из заготовок, у которых толщина значительно меньше размеров в плане (лист, лента, полоса). При листовой штамповке (рис. 3.10, д) заготовка 3 деформируется с помощью пуансона 1 и матрицы 2.

Ковкой (рис. 3.10, е) изменяют форму и размеры заготовки 2 пу­тем последовательного воздействия универсальными инструментами 1 на отдельные участки заготовки.

При объемной штамповке (рис. 3.10, е) на заготовку, являющуюся отрезком прутка 2, воздействуют штампом 1, причем металл заготовки заполняет полость штампа, приобретая ее форму и размеры.

Рис. 3.10. Основные виды обработки металлов давлением: а - прокатка; б - прессование; в,г - волочение; д - листовая штамповка(один из процессов); е - ковка; Р - усилие прижатия прокатных валков; Ртр - усилие трения; Рп - усилие прессования;

Рпр - усилие протягивания; Рк - усилие ковки; Рш - усилие штамповки.

 

Ковкаспособ обработки металлов давлением, осуществляемый с помощью кузнечного инструмента или штампов, при котором ин­струмент оказывает многократное, прерывистое воздействие на на­гретую заготовку, в результате чего она деформируется и постепенно приобретает заданные форму и размеры. Ковка является единственным способом изготовления крупных поковок (массой до 250 т): валов гидрогенераторов, коленчатых валов судовых двигателей, валков прокатных станов и т.д. Ковку обычно применяют в мелкосерийном или единичном про­изводстве, а также для изготовления крупных поковок.

Ковка может быть свободной или в подкладных штампах, ручной или машинной, осуществляемой на паровоздушных молотах или на ковочных гидравлических прессах. При ручной ковке применяют наковальни, большие и малые мо­лотки (кувалды и ручники), клещи для захвата и поддержания заго­товки, бородки, зубила, подбойники, обжимки (рис. 3.11, а—з), при машинной ковке — бойки, обжимки, раскатки, пережимки, патроны (рис. 3.11, и-п).

Рис. 3.11. Инструмент для ручной и машинной ковки: а - наковальня; б - кувалда;

в - ручник; г - клещи; д - бородок; е - зубило; ж - подбойник; з - обжимка;

и - плоские бойки; к - вырезные бойки; л - закругленные бойки; м - обжимки;

н - раскатки; о - пережимки; п - патроны.

Основными операциями ковки являются осадка, высадка, про­тяжка, прошивка, отрубка, гибка. Осадкой называют такую технологическую операцию обработки давлением, при которой уменьшается высота исходной заготовки при одновременном увеличении площади ее поперечного сечения (рис. 3.12).

При этом осадка цилиндрического образца может рас­сматриваться без учета трения на торцах (рис. 3.12, а) (идеальный вариант) или при наличии трения на торцах (рис. 3.12, б) (реальный вариант). Для устойчивости при осадке цилиндрических заготовок высо­та заготовки h 0 должна быть не более 2,5 диаметров:

Рис. 3.12. Схемы осадки цилиндрического образца без трения на торцах (а - идеальный вариант) и при наличии трения на торцах (б - реальный вариант):

ho и h1- исходный и конечный размеры обрабатываемого изделия; d - диаметр заготовки; d1 - диаметр детали; Δh - величина осадки; P - усилие осадки.

Высадкаявляется разновидностью осадки. При этом металл оса­живают лишь на части длины заготовки (рис. 3.13, а). Прошивка — операция получения полостей за счет вытеснения металла (рис. 3.13, б) с помощью инструмента — прошивки. Для получения требуемой формы детали используют подкладные штампы (рис. 3.14).

Рис. 3.13. Схемы высадки (а) и двусторонней прошивки (б).

Рис. 3.14. Схема штамповки в подкладных штампах.

Горячая объемная штамповка— это вид обработки металлов давлением, при которой формообразование поковки из на­гретой заготовки осуществляют с помощью специального инструмента, называемого штампом. При штамповке течение ме­талла ограничивается поверхностями по­лостей или выступов в отдельных частях штампа. В конечный момент штамповки металл занимает всю замкнутую полость штампа (ручей) в соответствии с конфигу­рацией поковки. Благодаря этому горячей объемной штамповкой можно получать поковки сложной конфи­гурации с минимальными напусками (или без них) и с меньшими допусками, чем при ковке (рис. 3.15).

Рис. 3.15. Схемы штамповки в открытых (а) и закрытых (б) штампах: hзаз - зазор.

 

По наличию или отсутствию заусенца различают штампы открытые (рис. 3.15, а) и закрытые (рис. 3.15, б).

Штамповку подразделяют на холодную и горячую (в зависимости от температуры нагрева заготовок), формовочное, высадочное, про­шивное и т.д. (по типу операций), молотовое и прессовое (по типу применяемого оборудования).

Основными деталями штампа являются пуансон и матрица. Штампы, предназначенные для молотовых и кривошипно-горячештамповочных прессов, состоят из верхней и нижней частей, на соприкасающихся поверхностях которых имеются ручьи для по­следовательного формообразования изделия. Изготавливают штампы из углеродистых и легированных (в основном хромом) штамповых сталей.

Штамповка в открытых штампах характеризуется переменным зазором между подвижной и неподвижной частями штампа. В зазор вытекает заусенец (облой). По мере уменьшения зазора находящийся в нем металл интенсивно охлаждается, увеличивается предел теку­чести металла и возрастает сопротивление перемещению заусенца. Благодаря этому заполняется вся полость штампа, и только излишки металла вытесняются в заусенцы. Заусенцы впоследствии удаляются в специальных обрезных штампах.

При штамповке в закрытых штампах зазор между подвижной инеподвижной частями штампа достаточен для относительного пере­мещения частей штампа, но не для образования заусенца. Поэтому воизбежание незаполнения углов полости штампа или увеличения высоты поковки необходимо строго соблюдать равенство объемов заготовки металла и поковки.

К штамповке в закрытых штампах можно отнести штамповку вы­давливанием. Горячая объемная штамповка применяется в крупно­серийном или массовом производстве, позволяет получать поковки сложной конфигурации с минимальными напусками и меньшими (по сравнению со стандартными методами) допусками.

Производительность штамповки значительно выше, чем ковки. В то же время штамп — дорогостоящий инструмент, предназначен­ный для изготовления только одной конкретной поковки. Усилия при штамповке больше, чем при ковке одинаковых поковок. Поэтому масса поковок, изготавливаемых объемной штамповкой, редко пре­вышает 20 кг.

Основным оборудованием для ковки и штамповки являются ковочные и штамповочные молоты и прессы. Ковочный молот служит для обработки металлических заготовок ударами падающих частей. По роду привода молоты бывают паровоздушные (рис. 3.16, а), пневматические (рис. 3.16, б), механические, гидравлические.

Рис. 3.16. Принципиальные схемы молотов: а - паровоздушного:1 - баба; 2 - направляющие; 3 - поршень; 4 - цилиндр для подачи пар; 5 - нижний боек; б - пневматического: 1 - рабочий цилиндр; 2 - компрессорный цилиндр; 3 - поршень компрессорного цилиндра; 4 - шатун; 5 - вал; 6,7 - верхний и нижний золотник соответственно;

8 - поршень рабочего цилиндра; 9 - баба молота; 10 - верхний боек; 11 - нижний боек.

 

Паровоздушные молоты (см. рис. 3.16, а) приводятся в действие паром или сжатым воздухом под давлением 0,7... 0,9 МПа. Перемеще­ние бабы 1 относительно направляющих 2 происходит при движении поршня 3 под действием сжатого пара или воздуха. При подаче пара (или воздуха) в верхнюю полость цилиндра впадающие части пере­мещаются вниз и наносят удар по заготовке, уложенной на нижний боек 5. При подаче пара (или сжатого воздуха) в нижнюю полость цилиндра падающие части поднимаются в верхнее положение.

Пневматические молоты (см. рис. 3.16, б) содержат два цилин­дра: рабочий 1 и компрессорный 2. Поршень 3 компрессорного цилиндра перемещается шатуном 4 от кривошипного вала 5. При этом воздух поочередно сжимается (р = 0,3 МПа) в верхней или нижней полостях цилиндра и при нажатии на педаль или рукоятку, открывающую золотники 6 и 7, поступает в рабочий цилиндр 1. Рабочий цилиндр действует на поршень 8. Поршень вместе с мас­сивным штоком 9 одновременно является бабой молота, в которой крепится верхний боек 10, При перемещении падающих частей вниз верхний боек ударяет по заготовке, уложенной на неподвижный нижний боек 11.

Основание ковочного молота (шабот) имеет массу, в 8 — 15 раз превышающую массу падающих частей. Ша­боты штамповочных молотов еще массивнее — в 20 —30 раз больше массы падающих частей. Это обеспечивает высокий КПД удара (η= 0,8... 0,9) и высокую точность соударения частей штампа. Кроме того, для этой же цели молоты имеют усиленные регулируемые на­правляющие для движения бабы.

По способу работы различают молоты простого и двойного дей­ствия. В молотах простого действия падающая часть (баба) падает свободно под действием собственной силы тяжести, а в молотах двойного действия она дополнительно разгоняется. Скорость бабы высокоскоростных молотов может достигать 25 м/с, а у обычных молотов 3...6 м/с.

Паровоздушные ковочные молоты имеют массу падающих частей 500... 5 000 кг, а штамповочные — 500... 30 000 кг. На ковочных молотах изготовляют поковки массой 20... 2 000 кг, как правило, из прокатан­ных заготовок или из слитков. Максимальная масса штампованных поковок — 1 000 кг.

У бесшаботных паровоздушных молотов шабот заменен нижней подвижной бабой, соединенной с верхней бабой механической или гидравлической связью.

Необходимый молот выбирают на основании расчета или по спра­вочным таблицам.

Кривошипные штамповочные прессы имеют постоянный ход, равный удвоенному радиусу кривошипа (рис. 3.17). Штамповка на кривошипных прессах характеризуется высокой производитель­ностью и точностью заготовок по высоте. Заготовка извлекается из штампа при обратном ходе его верхней части с помощью выталкивателей. Благодаря этому удобно штампо­вать в закрытых штампах выдавливанием и прошивкой.

Рис. 3.17. Схема кривошипного штамповочного пресса:1 - пуансон; 2 - упор; 3 - привод;

4 - электродвигатель; 5 - подвижная матрица; 6 - приводной вал; 7 - главный ползун;

8 - крышка; 9 - кривошипный вал; 10 - кулиса; 11,12 - верхний и нижний бойки.

Кривошипные штамповочные прессы усилием 6,3... 100 МН успешно заменяют штамповочные молоты с массой падающих частей 630... 10000 кг. Однако стоимость кривошипного горячештамповочного пресса в 3 — 4 раза выше стоимости эквивалентного по техно­логическим возможностям молота.

Горизонтально-ковочные машины (ГКМ) (рис. 3.18) имеют штампы, со­стоящие из трех частей: неподвижной матрицы 3, под­вижной матрицы 5 и пуансона 1, размыкающихся в двух взаимно-перпендикулярных плоскостях.

 

Рис. 3.18. Схема ГКМ

Пруток 4 с нагретым участком, обращенным к пуансону, закладывают в неподвижную матрицу 3. Положение прутка фиксируется упором 2. При включении ГКМ по­движная матрица 5 прижимает пруток к неподвижной матрице, упор 2 отводится в сторону, а пуансон 1 ударяет по выступающей части прутка, деформируя ее. Работа ГКМ поясняется кинематической схемой, приведенной на рис. 3.19.

Рис. 3.19. Кинематическая схема горизонтально-ковочной машины:1 - подвижная

щека; 2 - система рычагов; 3 - ползун; 4 - подвижные кулачки; 5 - шатун;

6 - кривошипный вал; 7 - главный ползун.

 

Главный ползун 7, несущий пуансон, приводится в дви­жение от кривошипного вала 6 с помощью шатуна 5. Подвижная щека 1 приводится в движение от бокового ползуна 3 системой рычагов 2. Боковой ползун приводится в движение кулачками 4, установленными на конце кривошипного вала 6. Горизонтально-ковочные машины обычно строят с усилием до 30 МН. Основными операциями, выполняемыми на ГКМ, явля­ются высадка, прошивка и пробивка.

Штамповку на ГКМ можно выполнять за несколько проходов в отдельных ручьях, оси которых расположены горизонтально одна над другой. Каждый переход выполняется за один рабочий ход ма­шины.

Действие гидравлического пресса основано на законе гидроста­тического давления Паскаля, который в 1698 г. указал, что «сосуд, наполненный водой, является но­вой машиной для увеличения сил в желаемой степени» (рис. 3.20). Усилие современных гидравлических штамповочных прессов (рис. 3.21) достигает 750 МН.

 

 

Рис. 3.20. Схема к объяснению закона Паскаля.

 

Рис. 3.21. Принципиальная схема гидравлического пресса.

 

Листовая штамповка предназначена для получения разнообразных плоских и пространственных изделий типа облицовочных автомобильных деталей, деталей самолетов, ракет и других изделий сложной формы. Листовую штамповку применяют в автомобильной, авиационной, электротехнической промышленности, в тракторостроении, приборостроении и др.

Листовая штамповка снижает объем обработки резанием, обеспечивает высокие точность размеров и производительность (до 40 тыс. деталей в смену с одной машины). В качестве заготовок используют лист, полосу или ленту. Толщина заготовок обычно не превышает S ≤ 10 мм.

Как правило, при листовой штамповке пластическую деформацию, обеспечивающую необходимые форму и размеры, получает лишь часть заготовки. Толщина стенок штампованных деталей незначительно отличается от толщины заготовок. Операции, в которых изменяются лишь форма и размеры заготовки без разрушения ее в процессе деформирования, называются формоизменяющими. Операции, обуславливающие разрушение материала заготовки, называются разделительными.

К числу формоизменяющих операций листовой штамповки относят гибку, вытяжку, отбортовку, обжим, раздачу и др. (рис. 3.22).

Рис. 3.22. Операции листовой штамповки: а - гибка; б - вытяжка; в - отбортовка;

г - обжим; д - раздача.

 

Гибка (рис. 3.22, а) применяется для изменения кривизны заготовки практически без изменения ее линейных размеров. В результате такого деформирования часть заготовки поворачивается относительно другой на определенный угол. Пластическая деформация при гибке сосредотачивается на узком участке, контактирующем с пуансоном.

При гибке не допускается разрушение материала, образование трещин, складок. Наиболее слабым местом является зона деформаций растяжения в наружном слое детали на участке закругления пуансона. При уменьшении от­ношения радиуса закругления R к толщине заготовки S деформация возрастает. Поэтому для предотвращения появления трещин, складок или разрушения заготовки ограничивают минимальные размеры радиуса закругления пуансона: Rmin = (0,1 ...2) S.

Вытяжка (см. рис. 3.22, б) заклю­чается в протягивании заготовки через отверстие матрицы, причем плоская заготовка превращается в полое изделие, а у пространственной заго­товки уменьшаются поперечные размеры (рис. 3.23). Вытяжка может осуществляться без утонения или с утонением стенки заготовки.

Рис. 3.23. Схема вытяжки:1- матрица с рабочим диаметром Dм и радиусом закругления Rм; 2 - полуфабрикат; 3 - прижим; 4 - пуансон с рабочим диаметром Dп и радиусом закругления Rп; 5-заготовка под вытяжку диаметром Dз и толщиной S.

 

Формоизменение при вытяжке (рис. 3.23) оценивают отношением диаме­тра D3 заготовки (типа диска, фланца) к диаметру d полученной детали типа цилиндр, которое называется коэффициентом вытяжки:

Кп = D3 / d

При вытяжке без измерения толщины стенки зазор z между пуансоном и матрицей должен быть больше толщины s заготовки: z = (1,1 ...1,3)S. При вытяжке с изменением толщины стенки последняя за один переход может быть уменьшена в 1,5 —2 раза, при этом зазор между пуансоном и матрицей должен быть меньше толщины стенки, а удель­ные усилия будут большими. Вытяжку с утонением применяют для устранения опасности складкообразования, а также для получения деталей со стенками, толщина которых меньше толщины донышка.

Усилие вытяжки в момент, когда заготовка полностью охватит скругленную кромку матрицы, может быть определено по формуле:

Рвыт = 2πRмSQрmax,

где Qрmax— истинная прочность материала заготовки при полном упрочнении.

При отбортовке часть заготовки, граничащая с предварительно пробитым отверстием, вдавливается в матрицу, при этом размеры отверстия увеличиваются, и этот участок заготовки приобретает цилиндрическую форму (см. рис. 3.22, в). Допустимое без разрушения увеличение диаметра отверстия при отбортовке зависит от механических свойств материала заготовки и ее относительной толщины s/dQ и составля­ет d/dQ = 1,2.,. 1,8, где dQпервоначальный диаметр заготовки.

При обжиме (см. рис. 3.22, г) полая тонкостенная цилиндри­ческая заготовка подается в отверстие матрицы, в результате чего происходит уменьшение поперечных размеров.

При раздаче (см. рис. 3.22, д) пуансон внедряется в полую тон­костенную цилиндрическую заготовку, и ее поперечные размеры в очаге деформации увеличиваются. При рассмотрении напряженного и деформированного состояний в очаге деформации при анализе операций листовой штамповки обычно пользуются полярной системой координат с полюсом, совпадающим с центром кривизны срединной поверхности заготовки в данный момент деформирования (рис. 3.24).

Рис. 3.24. Схема напряжений при листовой штамповке: Rн - наружный радиус заготовки до деформации; Рн - переменный радиус в полярной системе координат; rвн - внутренний диаметр детали; σ - напряжения; ε - деформации; индексы ρ, θ и z относятся

к радиальным, тангенциальным и осевым параметрам, соответственно.

 

При формоизменяющих операциях листовой штамповки каса­тельные напряжения относительно малы и поэтому принимают, что направления нормальных напряжений σр и σθ совпадают с глав­ными направлениями тензора напряжений, т. е. являются главными напряжениями. При rBH/s > 5 принимают ρп ≈ rBH + s/2.

Деформации на операциях листовой штамповки осуществляют­ся, когда напряжения σр и σθ соответствуют предельному состоянию (условию пластичности). В зависимости от условий нагружения заготовки в различных опе­рациях листовой штамповки схемы напряженного состояния и знаки напряжений σр и σθ в очаге деформации могут быть различными. В операциях вытяжки и отбортовки напряжения ар растягиваю­щие, а в операциях обжима и раздачи — сжимающие. Напряжения σθ являются растягивающими в операциях раздачи и отбортовки, а в операциях вытяжки и обжима — сжимающими (рис. 3. 25).

Рис. 3.25. Условия предельного со­стояния при плоском

напряженном состоянии

 

На рис. 3.25 графически представлены условия предельного со­стояния при плоском напряженном состоянии (в виде эллипса и ше­стиугольника в координатах σs — σθ) и приведены схемы операций, деформирование заготовки в которых осуществляется при знаках напряжений, соответствующих определенным квадрантам.