Метод Борда

 

Отметим еще одну процедуру голосования из множества предложенных: метод Борда [2]. Согласно этому методу» результаты голосования выражаются в виде числа баллов, набранных каждым из кандидатов. Пусть число кандидатов равно п. Тогда за первое место присуждается п баллов, за второе — п-1, за последнее — один балл.

Применим метод Борда к приведенному выше примеру (см. табл. 17). Подсчитаем число баллов для каждого из кандидатов:

А: 23-3+19.1+16-1+2-2=108;

В: 23-1+19-3+16-2+2-1=114;

С: 23-2+19.2+16-2+2-3=138.

В соответствии с методом Борда мы должны объявить победителем кандидата С.

Однако с методом Борда, как и с принципом Кондорсе, возникают проблемы. Предположим, что результаты голосования в выборном органе представлены табл 18. Подсчитав баллы в соответствии с методом Борда, получим: А — 124, В — 103, С— 137. В соответствии с методом Борда победителем следует объявить кандидата С. Однако в данном случае явным победителем является кандидат А, набравший абсолютное большинство голосов: 31 из 60.

 

 

Приведенные примеры позволяют понять, что парадоксы при голосовании не возникают лишь в случае, когда победитель определяется по принципу абсолютного большинства голосов. Однако такой случай нетипичен для большинства выборов в демократических странах. Обычно число кандидатов больше, чем два, и редки случаи, когда кто-то из них сразу же получает поддержку абсолютного большинства избирателей.

Интересно, что парадоксы голосования сохраняются и при введении двух туров и условии, что во второй тур выходят два кандидата, набравшие большинство голосов. Обратимся к табл. 16, составленной Кондорсе. В соответствии с предпочтениями во второй, тур выходят А (23 голоса) и В (19 голосов), после чего побеждает А. Однако при небольшом усилении первоначальной позиции А: предпочтения двух избирателей (3-я строка) выглядят как А -» В -> С, во второй тур выходят А (25 голосов) и С (20 голосов), после чего побеждает С. Ясно, что такой результат голосования противоречит здравому смыслу.