Тема 1. Основные понятия теории систем

Проявление лихорадки, значение лихорадки (положительные и отрицательные эффекты).

Лихорадка, гипер- и гипотермия, их отличия.

Гипертермия – то простое повышение температуры, которое может быть из–за избыточного тепла в организме, когда замедляется кровоток, усиливается потоотделение. Гипертермии сопутствует повышение внутрисосудистого свёртывания крови. Гипертермия приводит к тепловому удару. Искусственная гипертермия применяется для лечения психических заболеваниях, при радиоизотопном лечении опухоли.

Гипотермия – состояние организма, при котором температура тела падает ниже нормы. Сейчас применяется искусственная гипотермия (при операциях, требующих временной остановки кровообращения)

В 1942 г немецкий доктор (Зигмунд) Рашер на конференции «Медицинские проблемы, вызванные морем и зимой», доложил о своих экспериментах на заключённых в Дахау и Аушвице. С 1942 по 1945 гг в Дахау проводились эксперименты с малярией.

Введение искусственной гипотермии дало развитие такой науке ка крионика (практика криоконсервации людей после смерти). Крионирован первый человек, умиравший от рака, в 1967г. В 2005г крионирован первый россиянин.

Расстройства терморегуляции: гипотермия, гипертермия, лихорадка

Чем же отличается лихорадка от от гипо- и гипертермии? Гипертермия – по сути дела – это следствие, а не причина. Гипертермия сопровождает лихорадку и является её признаком.

Гипертермия – это повышение температуры тела, при котором нет перестройки гомеостаза, т.е. терморегуляция нарушена, разбалансирована

· субфебрильная

· гиперпиретическая,

· пиретическая

· мимолётная, острая, подострая и хроническая лихорадки.

Значение лихорадки. Положительные эффекты:

1. повышает антитоксическую функцию печени

2. активизирует фагоцитоз

3. повышает бактерицидные свойства сыворотки крови

4. усиливает выработку антител

5. угнетает размножение микробов

Отрицательные эффекты

1. возникают инфекционно-токсические явления

2. отрицательно влияет на ЦНС, ССС, дыхательную, пищеварительную, МВС

 

 

 

Термины теория систем и системный анализ, несмотря на период более 25 лет их использования, все еще не нашли общепринятого, стандартного истолкования.

Причина этого факта заключается в динамичности процессов в области человеческой деятельности и в принципиальной возможности использовать системный подход практически в любой решаемой человеком задаче.

Общая теория систем (ОТС) – научная дисциплина, изучающая самые фундаментальные понятия и аспекты систем. Она изучает различные явления, отвлекаясь от их конкретной природы и основываясь лишь на формальных взаимосвязях между различными составляющими их факторами и на характере их изменения под влиянием внешних условий, при этом результаты всех наблюдений объясняются лишь взаимодействия их компонентов, например характером их организации и функционирования, а не с помощью непосредственного обращения к природе вовлечённых в явления механизмов (будь они физическими, биологическими, экологическими, социологическими, или концептуальными)

Для ОТС объектом исследования является не “физическая реальность”, а “система”, т.е. абстрактная формальная взаимосвязь между основными признаками и свойствами.

При системном подходе объект исследования представляется как система. Само понятие система может быть относимо к одному из методологических понятий, поскольку рассмотрение объекта исследуется как система или отказ от такого рассмотрения зависит от задачи исследования и самого исследователя.

 

Существует много определений системы.

1. Система есть комплекс элементов находящийся во взаимодействии.

2. Система – это множество объектов вместе с отношениями этих объектов.

3. Система – множество элементов находящихся в отношениях или связях друг с другом, образующая целостность или органическое единство (толковый словарь)

Термины «отношение» и «взаимодействие» используются в самом широком смысле, включая весь набор родственных понятий таких как ограничение, структура, организационная связь, соединение, зависимость и т.д.

Таким образом, система S представляет собой упорядоченную пару S=(A, R), где A - множество элементов; R- множество отношений между A.

 

Система — это полный, целостный набор элементов (компонентов), взаимосвязанных и взаимодействующих между собой так, чтобы могла реализоваться функция системы.

 

Исследование объекта как системы предполагает использование ряда систем представлений (категорий) среди которых основными являются:

1. Структурное представление связано с выделением элементов системы и связей между ними.

2. Функциональные представление систем – выделение совокупности функций (целенаправленных действий) системы и её компонентов направленное на достижение определённой цели.

3. Макроскопическое представление – понимание системы как нерасчленимого целого, взаимодействующего с внешней средой.

4. Микроскопическое представление основано на рассмотрении системы как совокупности взаимосвязанных элементов. Оно предполагает раскрытие структуры системы.

5. Иерархическое представление основано на понятии подсистемы, получаемом при разложении (декомпозиции) системы, обладающей системными свойствами, которые следует отличать от её элемента – неделимого на более мелкие части (с точки зрения решаемой задачи). Система может быть представлена в виду совокупностей подсистем различных уровней, составляющую системную иерархию, которая замыкается снизу только элементами.

6. Процессуальное представление предполагает понимание системного объекта как динамического объекта, характеризующегося последовательностью его состояний во времени.

 

Рассмотрим определения других понятий, тесно связанных с системой и ее характеристиками.

Объект.

Объектом познания является часть реального мира, которая выделяется и воспринимается как единое целое в течение длительного времени. Объект может быть материальным и абстрактным, естественным и искусственным. Реально объект обладает бесконечным набором свойств различной природы. Практически в процессе познания взаимодействие осуществляется с ограниченным множеством свойств, лежащих в приделах возможности их восприятия и необходимости для цели познания. Поэтому система как образ объекта задаётся на конечном множестве отобранных для наблюдения свойств.

Внешняя среда.

Понятие «система» возникает там и тогда, где и когда мы материально или умозрительно проводим замкнутую границу между неограниченным или некоторым ограниченным множеством элементов. Те элементы с их соответствующей взаим­ной обусловленностью, которые попадают внутрь, — образуют сис­тему.

Те элементы, которые остались за пределами границы, образуют множество, называемое в теории систем «системным окружением» или просто «окружением», или «внешней средой».

Из этих рассуждений вытекает, что немыслимо рассматривать систему без ее внешней среды. Система формирует и проявляет свои свойства в процессе взаи­модействия с окружением, являясь при этом ведущим компонентом этого воздействия.

В зависимости от воздействия на окружение и характер взаимодействия с другими системами функции систем можно расположить по возрастающему рангу следующим образом:

—пассивное существование;

—материал для других систем;

—обслуживание систем более высокого порядка;

—противостояние другим системам (выживание);

—поглощение других систем (экспансия);

—преобразование других систем и сред (активная роль).

 

Всякая система может рассматриваться, с одной стороны, как подсистема более высокого порядка (надсистемы), а с другой, как надсистема системы более низкого порядка (подсистема). Например, система «производственный цех» входит как подсистема в систему более высокого ранга — «фирма». В свою очередь, надсистема «фирма» может являться подсистемой «корпорации».

Обычно в качестве подсистем фигурирует более или менее самостоятельные части систем, выделяемые по определённым признакам, обладающие относительной самостоятельностью, определённой степенью свободы.

Компонент – любая часть системы, вступающая в определённые отношения с другими частями (подсистемами, элементами).

Элементомсистемы является часть системы с однозначно определёнными свойствами, выполняющие определённые функции и не подлежащие дальнейшему разбиению в рамках решаемой задачи (с точки зрения исследователя).

Понятие элемент, подсистема, система взаимопреобразуемы, система может рассматриваться как элемент системы более высокого порядка (метасистема), а элемент при углубленном анализе, как система. То обстоятельство, что любая подсистема является одновременно и относительно самостоятельной системой приводит к 2 аспектам изучения систем: на макро- и микро- уровнях.

При изучение на макроуровне основное внимание уделяется взаимодействию системы с внешней средой. Причём системы более высокого уровня можно рассматривать как часть внешней среды. При таком подходе главными факторами являются целевая функция системы (цель), условия её функционирования. При этом элементы системы изучаются с точки зрения организации их в единое целое, влияние на функции системы в целом.

На микроуровне основными становятся внутренние характеристики системы, характер взаимодействия элементов между собой, их свойства и условия функционирования.

Для изучения системы сочетаются оба компонента.