Й учебный вопрос. Устройство и работа механизмов и систем лодочного мотора

Ой учебный вопрос. Устройство и технические характеристики лодочных моторов

Рис.9.

Рис. 8

Рис.7.

Рис. 6. Диаграмма двигателя с поршневым управлением впуском

Рис.5.

Рис.3.

Рис.2.

Рис. 1. Схема работы двухтактного двигателя

I — впуск горючей смеси в картер; II — сжатие в цилиндре; III — сжатие в картере; IV — рабочий ход; V — выпуск и продувка в цилинд­ре; VI — окончание сжатия в картере

 

ся (рис. 1, III), т. к. к этому моменту впускное окно уже перекрыто (механизм управления впуском описан ниже). Когда верхняя кромка поршня дойдет до выпускного окна, камера сгорания соединится с атмосферой (однако выпуска не произойдет, потому что воспламенения смеси еще не было). Двигаясь дальше, верхняя кромка поршня открывает проду­вочное окно и смесь, предварительно сжатая в картере, ус­тремляется в камеру сгорания.

После прохождения НМТ поршень снова движется вверх. В картере под поршнем начинается процесс формирования но­вого заряда для продувки, а в камере сгорания смесь в это вре­мя сжимается. Поршень, двигаясь вверх, перекрывает сначала продувочные окна, а затем выпускные окна — продувка закан­чивается и начинается сжатие (рис. 1, II). В момент подхода поршня к ВМТ в запальной свече возникает искра, топливо воспламеняется и возросшее давление толкает поршень вниз — происходит рабочий ход (рис. 1, IV). Выпускные окна откры­ваются — начинается выпуск, давление в камере сгорания па­дает. Отработанные газы улетают через выпускное окно в ат­мосферу, а после открытия продувочных окон поступающая через них свежая смесь выталкивает остатки отработанных га­зов — происходит продувка.

 

1.2. СИСТЕМА ПРОДУВКИ ДВИГАТЕЛЕЙ ПОДВЕСНЫХ МОТОРОВЕсли процессы сжатия, сгорания и расширения в двух-и четырехтактных двигателях аналогичны, то очистка ци­линдра от остаточных газов и наполнение его свежей смесью у них существенно различаются. В четырехтактном двига­теле основная масса остаточных газов вытесняется порш­нем при его ходе к ВМТ (верхней мертвой точке). В двух­тактном двигателе отработанные газы вытесняются свежей смесью, предварительно сжатой в картере, при открытых продувочных и выхлопных окнах, т. е. продувка и выпуск происходят одновременно. При больших конструктивных преимуществах такая система очистки имеет и свои минусы: свежая смесь частью смешивается с остатками продуктов сгорания, а частью вылетает в атмосферу через выпускную систему. Чтобы свести к минимуму эти нежелательные явления при наилучшей очистке цилиндра от остаточных продуктов сгорания, конструкторами двухтактных дви­гателей разработаны различные системы продувки ци­линдра.

Таких систем несколько: контурная, в которой поток про­дувочной смеси движется по контуру цилиндра, прямоточ­ная с движением смеси от одного конца цилиндра к другому и др.

В настоящее время в двухтактных двигателях подвесных лодочных моторов повсеместно применяется возвратно-пет­левая схема продувки. Здесь рабочая смесь направляется из нижней части цилиндра в верхнюю, описывает петлю и вы­талкивает отработавшие газы. Петлевая схема продувки кон­структивно проста — это и определило ее выбор для лодоч­ных и мотоциклетных двигателей, хотя она и характеризует­ся наличием непродутых зон в цилиндре в большей степени, чем прямоточная и контурная.

Как же протекает процесс продувки? Свежая смесь из кривошипной камеры через продувочные каналы устремля­ется в цилиндр. Сначала потоки поступающей смеси подни­маются вверх, направляясь по стенке цилиндра к головке. По мере движения поршня вниз струи продувочной смеси отклоняются от стенки и направляются к противоположной стороне цилиндра. Далее продувочные струи сталкиваются и ударяются в стенку, противоположную выпускному окну, поток обтекает камеру сгорания и спускается вдоль стенки к выпускному окну.

Для хорошей очистки необходимо, чтобы восходящая часть потока заняла одну половину вертикального сечения цилинд­ра, а нисходящая — другую. Практически осуществить это очень трудно. Неустановившийся продувочный поток имеет различную скорость по своему сечению: максимальное ее значение — у стенки, противоположной выпускному окну, снижается в слоях, лежащих ближе к центру. В центральной части цилиндра могут остаться непродутыми застойные и вихревые зоны.

Вид продувочного потока в цилиндре зависит от ширины и высоты окон и от продолжительности их открытия (так называемое «время—сечение» окна), от формы продувочных каналов, определяющих углы входа продувочных струй в ци­линдр, от формы днища поршня и камеры сгорания. Чтобы вытеснить отработавшие газы, не перемешиваясь с ними, продувочные струи должны быть компактными и обладать достаточной энергией. Эта энергия тем выше, чем больше разность давлений в кривошипной камере и цилиндре во вре­мя открытия продувочных окон (т. е. степень сжатия в карте­ре), и чем меньше потери в продувочных каналах. Если энергия лодочных моторов наиболее распространенным видом петле­вой продувки является двухканальная.

Продувочный канал образован наружной, внутренней и боковы­ми и стенками. По результатам многочисленных экспе­риментальных работ выбраны оптимальные углы наклона этих стенок. В большинстве случаев боковая стенка рас­положена под углом 55—60° к оси симметрии горизонталь­ного сечения, а боковая стенка под несколько меньшим углом или параллельно ей. Наклон стенки 3 составляет 10—15° и близок к направлению касательной к сфере днища порш­ня у его кромки. В том случае, если углы входа продувочных каналов выполнены неправильно, количество остаточных газов увеличивается, а струи свежей смеси, прижимаясь к стенкам цилиндра, попадают в выпускное окно — так называемый прямой выброс свежей смеси. Это приводит к увеличению расхода топлива и уменьшению мощности. Не меньшее значение имеет симметричность продувочных окон и углов входа продувочных каналов отно­сительно выпускного окна. Несимметричность входящих в цилиндр потоков приводит к появлению завихрений и не­желательному перемешиванию свежей смеси с отработав­шими газами.

О качестве продувки в дви­гателе и, в частности, о сим­метричности выполнения про­дувочных каналов, можно су­дить по следам от продувочных струй и нагару в местах, неомываемых продувочной смесьюна днище поршня и камерысгорания.

Гидравлические потери в продувочных каналах стремят­ся свести к минимуму, поэтому поперечное сечение проду­вочных каналов и окон должно быть как можно большим. Так как увеличение высоты продувочных, а следовательно, и выхлопных окон связано с уменьшением полезного объе­ма цилиндра, сечение продувочного окна увеличивают за счет его ширины. Увеличение же ширины ограничено вели­чиной, равной 0,45 диаметра цилиндра (при дальнейшем ее увеличении возникает опасность выдавливания поршнево­го кольца в окна). При большей ширине в окне делается перемычка.

При выборе фаз продувки, т. е., в конечном счете, высо­ты выхлопных и продувочных окон, принимается в расчет величина перемещения поршня от открытия выхлопных окон до начала открытия продувочных — так называемое предва­рение выпуска.

Более раннее открытие продувочных окон (увеличение их высоты) сдвигает максимальное значение крутящего момен­та в сторону меньших скоростей вращения коленчатого вала. При слишком малом предварении выпуска давление в ци­линдре может оказаться выше, чем давление в картере, и при открытии продувочных каналов выхлопные газы попадут по ним в картер, вызвав его дополнительный нагрев и ухудшив наполнение.

Величина оптимальной фазы продувки в двухтактных двигателях различных лодочных моторов неодинакова и находится в пределах 110—120° («Салют» — 112°, «Вете­рок-8» — 110°, «Ветерок-12» — 114°, «Нептун» — 121°, «Моск­ва-25» - 119°).

Для гоночных лодочных мо­торов, работающих на высоких оборотах, величина фазы продув­ки возрастает до 125—135°.

Говоря о видах продувки, применяемых в конструкциях лодочных моторов, следует отме­тить отличие петлевой дефлекторной продувки (см. рис. 2, а), где направление потока смеси задается козырьком на поршне (дефлектором), от продувки, в ко­торой направление струй опреде­ляется формой и наклоном про­дувочных каналов. Первый вид продувки использован на лодоч­ных моторах «Ветерок», «Москва-М», «Москва-25», «Прибой» и на большинстве американских мо­делей. Второй — на моторах «Не­птун», «Салют», «Вихрь-М», «Ве­терок-14», на шведских и япон­ских моделях.

К преимуществам дефлекторной продувки можно отнести простоту конструкции и техно­логичность, так как продувочные и выхлопные окна выполняются простым сверлением. К недостаткам — менее благоприятную в отношении смесе­образования форму камеры сгорания, которая хуже проду­вается из-за сложной конфигурации, большой вес и повы­шенную температуру днища поршня из-за наличия де­флектора.

При направлении смеси продувочными каналами очистка камеры сгорания получается более эффективной. Этому способствует простая плоская или несколько выпуклая фор­ма днища поршня и сферическая форма камеры сгорания, позволяющая производить ее механическую обработку, в результате чего более точно взддерживается необходимая степень сжатия. Технологические трудности выполнения совпадения продувочных каналов и окон в гильзе окупаются получением более высоких показателей мощности и экономичности. На рис. 2, б показана трехканальная петлевая продувка мотора «Вихрь-30».

При двух- и трехканальной петлевой продувке очень важ­но точно направить продувочные струи при выходе из окон в камеру сгорания. На направление струи влияют в основном длина участка 3 (рис. 39) и величины радиусов канала, осо­бенно у внутренней стенки. Длина прямого участка стенки 3 должна быть не меньшей, чем ширина продувочного окна. Внутренней стенкой продувочного канала 5 в большинстве случаев служит сама гильза. Стремясь увеличить внутренний радиус канала и создать направляющую часть у входа в ци­линдр прибегают к так называемой «отдаленной» продувке. Так выполнены продувочные каналы «Ветерков» и ряда гоночных моделей мотоциклетных двигателей. В таких каналах, благодаря большим радиусам внутренней и наружной стенок, создается большая длина направляющей части и становится возможной настройка про­дувочных каналов на высокое число оборотов коленвала .

Из двух каналов с одинаковыми поперечными сечениями входа и выхода канал с большим радиусом поворота будет оказывать значительно меньшее аэродинамическое сопротивление пото­ку продувочной смеси. Как пока­зали испытания, более плавные повороты каналов мало влияют на максимальную мощность, но зна­чительно повышают ее в диапазо­не средних и низких скоростей вращения двигателя. При отработ­ке продувочного канала необходи­мо также бороться с любым отры­вом потока от стенок (чаще всего от внутренней стенки канала).

В последнее время получает все большее распространение петлевая продувка с одним или несколькими дополнительными каналами, располагаемыми напротив выпускного окна (рис. 3). Добавочные каналы рас­полагаются обычно под углом 45—60° к вертикали. Проду­вочные струи этих каналов отжимают поток газов в верхней части к центру цилиндра и способствуют очистке централь­ных непродутых зон. По резуль­татам исследований, проведенных на мотоциклетных двигателях, применение третьего продувочно­го канала позволяет увеличить мощность двигателя на 7—12 %. Увеличение мощности с 20 до 23 л. с. на отечественном подвесном моторе «Нептун-23» было также

достигнуто в основном за счет замены двухканальной продувки на трехканальную. Прохождение сме­си в добавочный канал через пор­шень улучшает к тому же смазку верхней головки шатуна и охлаж­дение поршня.

Размещение дополнительных продувочных каналов на зеркале цилиндра связано с определенными конструктивными труд­ностями, особенно при поршневом управлении впуском. При золотниковом управлении подвод топливной смеси произво­дится сбоку картера и это намного упрощает размещение добавочных продувочных каналов.

На процесс продувки определенное влияние оказывает и форма камеры сгорания. Полусферическая камера сгорания, применяющаяся на большинстве двухтактных двигателей, не является лучшим решением. Она обеспечивает ровное про­текание свежей смеси и тем самым не препятствует ее «вылетанию» в выпускное окно. Усложненная же форма камеры сгорания, обусловленная применением дефлекторной про­дувки, способствует образованию застойных, непродуваемых зон. Наилучшие результаты были получены при смещении полусферы в головке цилиндров. Такая конструкция была использована при разработке мотора «Ветерок-14» (рис. 45).

Возможна ли некоторая доводка системы продувки дви­гателя своими силами? Безусловно.

 

Дело в том, что при изготовлении картеров, блоков ци­линдров, вставок продувочных каналов применяются не­сколько комплектов кокилей или пресс-форм и возможны некоторые несовпадения по контурам деталей, отлитых на разной литейной оснастке. К этому же могут привести и тех­нологические отклонения при механической обработке дета­лей.

Довести детали, образующие продувочный канал, до пол­ного совпадения контуров можно собственными силами. Сле­дует стремиться к тому, чтобы в продувочном канале не было уступов и неровностей более 0,5мм, чтобы контур продувоч­ного окна в гильзе совпадал с контуром окна в отливке блока цилиндров. Можно улучшить вход смеси в продувочный канал, сняв фаску с гильзы цилиндра в этом районе. Очень тщательно следует подогнать вставку в продувочном канале моторов «Ве­терок», «Москва», «Прибой» для обеспечения правильного на­правления продувочной струи при выходе из канала.

Не следует, однако, увлекаться излишней полировкой про­дувочных каналов. Спортсменам-водномоторникам известны, например, случаи уменьшения мощности гоночных двигате­лей «Кениг» после полировки продувочных каналов, имевших довольно-таки грубую поверхность после литья (возможно, при этом была нарушена форма канала). Более подробно с реко­мендациями по доводке продувочных каналов можно ознако­миться в статье А. С. Шикина «Повышение мощности двига­телей «Ветерков» в журнале «Катера и яхты», № 6 за 1972 г.

1.2. СИСТЕМА УПРАВЛЕНИЯ ВПУСКОМ В ДВУХТАКТНОМ ДВИГАТЕЛЕ

На большинстве подвесных лодочных моторов в качестве продувочного насоса используется кривошипная камера двига­теля. Основные технические показатели такого двигателя — литровая мощность и экономичность — находятся в прямой зависимости от степени наполнения камеры сгорания горю­чей смесью.

Рассмотрим зависимость наполнения рабочей камеры от качества работы системы впуска, основное назначение кото­рой — обеспечивать наиболее полное заполнение кривошип­ной камеры (картера), т. е. объема ниже поршня, свежей го­рючей смесью.

Не касаясь процессов, происходящих в рабочей камере, т. е. выше поршня (сжатие горючей смеси, воспламенение ее и расширение), посмотрим, что происходит в картере, в чем заключается принцип действия системы впуска и каковы ее наивыгоднейшие, оптимальные характеристики.

При движении поршня в цилиндре двигателя вверх от НМТ (нижней мертвой точки) после закрытия продувочных окон в пространстве под поршнем возникает все увеличивающееся разрежение. Если в этот момент открыть канал, соединяю­щий кривошипную камеру с карбюратором, в нее будет заса­сываться горючая смесь. Когда, миновав верхнюю мертвую точку (ВМТ), поршень начнет двигаться вниз, поступившая смесь будет сжиматься (чтобы при этом не произошло ее об­ратного выброса, впускной канал после прохождения порш­нем ВМТ должен быть перекрыт).

Иными словами, кривошипная камера и поршень служат насосом, всасывающим смесь из карбюратора и подающим ее под давлением в камеру сгорания.

На рис. 4 показана иллюстрирующая сказанное теорети­ческая круговая диаграмма газораспределения. На ней схе­матически показано протекание во времени процессов вса­сывания (собственно впуск), выхлопа (выпуск) и продувки за один полный оборот коленвала. Понятно, что продолжитель­ность и моменты начала и конца этих процессов обусловле­ны расположением и размером (по высоте цилиндра) проду­вочных и выхлопных окон и выбором момента открытия впускных окон. В этой связи необходимо подчеркнуть, что картина газораспределения, показанная на рис. 4, условна, так как не учитывает инерции движущейся с большой ско­ростью (до 100 м/сек) горючей смеси. Если построить двига­тель по такой теоретической диаграмме, работать он, конеч­но, будет, но его литровая мощность, т. е. мощность в л. с. на 1000 см3 рабочего объема, будет значительно ниже обычно достигаемого уровня.

Рис. 4. Диаграмма газораспределения без учета кинетической энер­гии потока движущейся смеси

Для обеспечения эффективности работы кривошипной камеры как насоса на практике, с учетом инерции потока, впускные окна открывают несколько раньше (обычно на ве­личину, не превышающую 20° угла поворота коленвала, называемую углом предварения впуска), чем поршень перекро­ет продувочные окна, и закрывают не в тот момент, когда поршень дошел до ВМТ, а позже — на величину до 60—70° угла поворота коленвала за ВМТ, называемую углом запаз­дывания закрытия. Первая из этих мер обеспечивает подса-сывание свежей смеси из карбюратора за счет кинетической энергии потока смеси, поступающей в цилиндр при еще про­должающейся продувке. Благодаря второй происходит допол­нительная «дозарядка» кривошипной камеры за счет кинети­ческой энергии установившегося потока смеси в канале от

карбюратора к кри­вошипной камере. Диаграмма такого вида (рис. 5) опти­мальна с точки зре­ния получения наи­высшей литровой мощности и эконо­мичности.

Продолжитель­ность продувки обычно равна 110— 130° поворота коленвала. Если при­нять, что в среднем продолжительность продувки равна120°, а всасывающее окно открывается на 15° раньше окончания продувки, угол предварения впуска (р1 равен примерно 135°.

Угол запаздывания закрытия (р2 обычно на нефорсиро­ванных моторах принимается равным 40—50° (при большей его величине наблюдается обратный выброс смеси в карбю­ратор) и доходит до 65—70° на гоночных высокооборотных двигателях. Если принять его равным 45°, общий угол (р(т. е. оптимальная продолжительность всасывания) получается рав­ным 180°.

Итак, мы установили оптимальные характеристики газо­распределения. Посмотрим теперь, как они реализуются практически, как работает управляющий механизм системы впуска.

В двигателях подвесных моторов применяются механиз­мы управления всасыванием трех типов: поршневые, клапан­ные и золотниковые.

Поршневое управление впуском. Само название механиз­ма показывает, что управление впуском, точно так же, как и продувкой и выхлопом, выполняется непосредственно самим

поршнем. Поршень при движении нижней кромкой перио­дически перекрывает впускное окно, прорезанное в зеркале цилиндра. При поршневом управлении диаграмма (см. рис. 6) всегда симметрична относительно ВМТ в силу того, что пор­шень открывает и закрывает впускное окно на одинаковых расстояниях до и после ВМТ. Угол запаздывания закрытия, как мы уже отмечали, невыгодно делать больше 60—70°, поэто­му и угол предварения открытия также будет равным 60—70°. Продолжительность всасывания получается 130°, т. е. мень­ше оптимальной на 50°.

Из круговой диаграммы виден и основной недостаток поршневого управления впуском: значительная часть хода поршня — от момента закрытия продувочных окон и до от­крытия впускных — при впуске не используется. По этой причине такая система распространения не получила, хотя и применялась на наших одноцилиндровых подвесных мото­рах «ЛМ-1, «ЛМР-6», «ЗИФ-5», «Стреле» и некоторых дру­гих. В то же время шведская фирма «Монарх-Кресчент» уже много лет применяет поршневой впуск на моторах различного объема; высокие литровая мощность (до 90 л. с.) и эконо­мичность моторов «Кресчент», несмотря на ограниченные возможности симметричной диаграммы, — результат длитель­ной отработки конструкции и специальной настройки систе­мы газораспределения.

Благодаря исключительной простоте и надежности пор­шневое управление впуском широко используется на транс­портных двигателях — в первую очередь для мотоциклов и мотороллеров.

Клапанный механизм управления впуском. Известны две конструкции клапанного механизма — с автоматическим и принудительным открытием и закрытием. Будем рассматри­вать только пер­вый вариант, так как второй при­меняется крайне редко — букваль­но в единичных конструкциях.

Для автомати­зации системы достаточно уста­новить на пути потока смеси от карбюратора к кривошипной ка­мере клапан, ко­торый под напо­ром потока от­крывается при ходе поршня к ВМТ и закрывается при обратном движении.

Обратимся к круговой диаграмме (рис. 7).

Поршень, двигаясь вверх от НМТ, закрывает верхней кромкой продувочное окно; начинает расти разрежение; под действием разницы давлений клапан впуска открывается и горючая смесь поступает в кривошипную камеру. После прохода порш­нем ВМТ объем кривошипной камеры начинает уменьшать­ся и происходит сжатие горючей смеси, но автоматический клапан еще некоторое время остается открытым под напором установившегося движения потока смеси и впуск продолжа­ется. Таким образом при использовании автоматического клапана, в отличие от поршневой схемы, получается несим­метричная диаграмма впуска.

Чаще всего в подвесных моторах применяют пластинча­тые лепестковые клапаны с ограничителями отгиба, распо­ложенными на перегородке из алюминиевого сплава или пласт­массы, крепящейся к передней части картера. Перегородка эта делается плоской (моторы «Ветерок», «Москва-12,5», «Прибой») или конической («Москва-25)»). Сами пластинки клапана изготовляются из стали или бериллиевой бронзы одинарными («Ветерок», см. рис. 8), двухлепестковыми («Прибой»), трехлепестковыми («Москва-12,5») или даже многолепестковыми (американские моторы фирмы «Эвинруд»). Полу­чение больших литровых мощнос­тей в двигателях с впускными плас­тинчатыми клапанами, особенно при малых рабочих объемах, затруд­нительно, поскольку сами клапаны создают большое аэродинамиче­ское сопротивление, а увеличение размеров впускных окон ведет к увеличению объема кривошипной камеры. Применение же обладаю­щих меньшим сопротивлением ме­нее жестких клапанов ограничива­ется необходимостью обеспечить прочность и надежность клапана и перегородки.

Золотниковый механизм управления впуском. При таком механизме управление впуском смеси производится золотни­ком, жестко связанным с коленвалом и вращающимся вместе с ним. Регулировкой положения на оси и угла сектора золот­ника можно обеспечить открытие и закрытие впускного окна в любой момент, независимо от положения поршня и степени разрежения в картере. Наиболее часто применяется дисковый золотник из пластмассы или стали, размещаемый непосред­ственно в картере (и скрепляемый со щечкой коленвала, как показано на рис. 9) либо в специальном приливе картера. В боковой стенке картера прорезано впускное окно. Золотник, вращаясь вместе с коленвалом, то открывает это окно, то сно­ва закрывает его: пока вырез в диске золотника проходит пе­ред окном, происходит впуск; как только сплошная часть зо­лотника закрывает окно, начинается сжатие. Золотник смазы­вается маслом, растворенным в горючей смеси; благодаря этому трение о стенки картера незначительно. Управление впуском с дисковыми золотниками, расположенными в картере, при­меняется на моторах «Вихрь» (золотники из текстолита) и «Нептун» (из капрона). На моторе «Са­лют» диско­вый золотник также выпол­нен из тек­столита, но размещен в специальном приливе кар­тера. Золот­никовое уп­равление вса­сыванием, по сравнению с поршневым и клапанным, обеспечивает наилучшее наполнение кривошипной камеры; это делает пер­спективным применение золотниковых механизмов в двух­тактных двигателях лодочных моторов с высокой литровой мощностью и особенно — в двигателях гоночных моделей.

Более подробное описание работы впускной системы двухтактного двигателя желающие могут найти в книгах:

Орлин А. С., Круглов М. Г. «Двухтактные двигатели», Маш-гиз, 1960 г. и Иваницкий С. Ю., Карманов Б. С., Рогожин В. В., Волков А. Г. «Мотоцикл. Теория, конструкция, расчет». Ма­шиностроение, 1971 г.

 

САЛЮТ 2Э Переносной мотор.

СРЕДНЯЯ ЦЕНА ПО МОСКВЕ: $150

ОБЩИЕ ДАННЫЕ:

макс. мощность 2 л.с. (1,5 кВт) при 5000 об/мин. Диаметр винта х шаг: 140х118 мм, двухлопастной. Топливный бак 2 л, встроенный. Выхлоп над винтом в воду. ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров - 1. Рабочий объем 45 куб. см. Диаметр цилиндра 38 мм. Ход поршня 40 мм. Степень сжатия 7,8. Продувка петлевая. Карбю­ратор поплавковый. Зажигание электронное (бескон­тактное). Охлаждение водяное. Передаточное отно­шение редуктора 12:22 (0,545)

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги):короткая. Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: 380 мм.

ВЕС: 11,5 кг.

Популярный мотор, пользующийся хорошей репутацией не только среди владельцев малых лодок (эксплуатируемых в водоизмещающем ре­жиме), но и в среде любителей байдарочных по­ходов (против течения этот малыш способен утянуть две сильно нагруженные байдарки). Распространено его использование и в качестве резервного двигателя-дублера на случай отказа основного или при проходе по мелководью (да­же при загрузке 240 кг «Салют» способен обес­печить скорость 8...10 км/час). При запуске и на ходу сравнительно надежен благодаря элек­тронной системе зажигания, но шумность не­сколько выше обычной. Система подъема дейдвуда обеспечивает 4 фиксированных положения наклона для правильной установки на транце. Задний ход (как и у остальных маломощных дви­гателей) осуществляется поворотом на 360 гра­дусов. Мотор может эксплуатироваться только в пресной воде.

 

ВЕТЕРОК 8(8Р)/12(12Р) Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $210 ($230) $220 ($250)

ОБЩИЕ ДАННЫЕ: макс. мощность 8 л.с. (5,9 кВт) /12 л.с. (8,8 кВт) (на носке коленвала при 5000 об./мин.). Генератор 12В, 30 Вт. Диаметр винта х шаг: 190 х 202 мм (216 х 210 мм) / 210 х 225 мм (222 х 240 мм). Топливный бак 14 л. Выхлоп над вин­том в воду.

ДВИГАТЕАЬ: 2-тактный. Количество цилиндров - 2. Рабочий объем 173 / 249 куб. см. Диаметр цилиндра 50 / 60 мм. Ход поршня 44 / 44 мм. Степень сжатия 7/6. Продувка дефлекторная. Карбюратор - 1. Зажигание электронное (бесконтактное). Охлаждение водяное. Передаточное отношение редуктора 13:21 (13:25) /13:21 (13:25). Передачи: передний ход - нейтраль (пе­редний ход - нейтраль - задний ход у 8Р и 12Р).

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги): ко­роткая (8, 8Р и 12, 12Р) и длинная (8У, 8РУ и 12У, 12РУ). Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: 380 мм и 510 мм.

ВЕС: 24,5 кг (26 кг) / 25,5 кг (27 кг).

Компактные моторы, которые наиболее подхо­дят для установки на малогабаритные суда, перево­зимые на багажнике автомобиля, деревянные водоизмешающие лодки, надувные лодки. Бесконтакт­ная электронная система зажигания МБЭ-3 обеспе­чивает сравнительно надежный запуск новых моди­фикаций. Представленные моторы имеют и моди­фикации с удлиненной подводной частью (в марки­ровке модели - «У»), которые имеют больший вес (на 0,5 кг) и могут устанавливаться на суда с высо­той транца до 510 мм (в частности, небольшие яхты и т. п. в качестве вспомогательного привода). В мор­ском исполнении «Ветерки» могут эксплуатировать­ся и в соленой воде.

 

НЕПТУН 23(23Э)Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $220 ($265)

ОБЩИЕ ДАННЫЕ: макс. мощность 22 л. с. (16,2 кВт) при 5250-5750 об./мин. Генератор 12 В, 40 Вт. Диаметр винта х шаг: 230 х 280 мм. Топ­ливный бак 20л. Выхлоп над винтом в воду. ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров -2. Рабочий объем 346куб. см. Диаметр цилиндра 61,75 мм. Ход поршня 58 мм. Степень сжатия 6,5. Продувка возвратно-петле­вая. Карбюратор -1. Зажигание бесконтактное элек­тронное (23Э) и двухискровое нагдино (23). Охлаж­дение водяное. Передаточное отношение редуктора 15:26 (0,577). Передачи: передний ход - нейтраль -задний ход.

УПРАВЛЕНИЕ: румпельное. Длина вала (ноги):короткая. Запуск ручной с автовозвратом. Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: до 405 мм. ВЕС: 44 кг.

По своим параметрам и надежности - «Нептун-23(23Э)» можно отнести к лучшим отечественным моторам. Наличие 6-точечной подвески на резино­вых амортизаторах обеспечивает легкое управле­ние мотором, отсутствие увода румпеля в сторону, малую вибрацию судна. Мотор оборудован узлами крепления дистанционного управления газом и по­воротом судна. Кроме штатного гребного винта, для расширения тяговых возможностей мотора ре­комендуется приобрести два дополнительных (диаметр х шаг): 220 х 300 мм и 260 х 240 мм. На­иболее новая модификация мотора (23Э) оборудо­вана сравнительно надежной бесконтактной элек­тронной системой зажигания и более эффектив­ным доработанным карбюратором. Учитывая тяго­вые возможности и большую надежность, высо­кую ремонтопригодность и доступность запча­стей, мотор можно отнести к наиболее выгодным покупкам в своем классе (для установки на неболь­шие глиссирующие лодки с экипажем 3-4 человека или малые катера).

ВИХРЬ ЗО(ЗОЭ) Переносные моторы.

СРЕДНЯЯ ЦЕНА ПО МО­СКВЕ: $400($440)

ОБЩИЕ ДАННЫЕ: макс. мощность 30 л.с. (23 кВт) при 4500 об/мин. Генера­тор 12 В, 30 Вт. Диаметр винта х шаг: 240 х 300 мм. Топливный бак 22 л. Выхлоп над винтом в во­ду.

ДВИГАТЕЛЬ: 2-тактный. Количество цилиндров -2. Рабочий объем 488 куб. см. Диаметр цилиндра 72 мм. Ход поршня 60 мм. Степень сжатия 7. Про­дувка возвратно-петлевая. Карбюратор - 1. Зажи­гание электронное (бесконтактное). Охлаждение водяное. Передаточное отношение редуктора

14:24 (0,58). Передачи: передний ход - нейтраль -задний ход.

УПРАВЛЕНИЕ: рунпельное. Длина вала (ноги): ко­роткая. Запуск ручной с автовозвратом и электро­стартер (стандартно у ЗОЭ). Подъем дейдвуда ручной.

РЕКОМЕНДОВАННАЯ ВЫСОТА ТРАНЦА: до 405 мм.

ВЕС: 45,5 кг (49 кг).

Один из самых распространенных в нашей стране подвесных моторов. Наиболее подходит для установки на глиссирующие лодки или катера среднего размера (к примеру - распространенные отечественные «дюральки») с экипажем 3...5 чело­век на борту. На нем установлена достаточно на­дежная бесконтактная электронная система зажи­гания МБ-22 и применена система настроенного выхлопа для уменьшения шума. Мотор оборудо­ван и устройством для подзарядки аккумулятора в процессе работы. Неплохой вариант для тех, кому не хватает мощности «Нептуна» (или средств для покупки дорогих западных альтернатив).

Подвесной лодочный мо­тор состоит из следующих ос­новных механизмов и узлов (см. рис. 10): двигателя (называемого также моторной головкой) с обслуживающи­ми его системами; передачи на гребной винт в виде вала, заключенного в дейдвудную трубу, подвески, привода гребного винта и бензобака, как правило, расположенно­го вне двигателя.

Рис.10

 

КОНСТРУКЦИЯ ДВИГАТЕЛЯ ПОДВЕСНОГО МОТОРА

Конструктивно двигатель подвесного мотора (рис. 11) со­стоит из неподвижных деталей — цилиндров, головок, карте­ра и подвижных — коленвала, поршней, шатунов, маховика (рис. 12).

Цилиндры двигателей выполняются из алюминиевого спла­ва в виде блока («Ветерок», «Нептун», «Вихрь», «Москва») либо каждый отдельно («Салют», «Привет-22») с залитыми или запрессованными гильзами из серого чугуна. Цилиндры со стороны ВМТ закрываются головкой, отливаемой из алю­миниевого сплава в одном блоке или отдельно на каждый цилиндр.