Магнитное поле постоянных магнитов
До сих пор мы рассматривали магнитное поле, создаваемое проводниками с током. Однако, магнитное поле создается и постоянными магнитами, в которых электрический ток отсутствует, в том смысле, что заряженные частицы не совершают направленного движения по проводнику. Еще до открытия Эрстеда магнитное поле постоянных магнитов пытались объяснить наличием магнитных зарядов, находящихся в теле, подобно тому, как электрические заряды создают электрическое поле. Противоположные полюса магнита считали сосредоточением магнитных зарядов разных знаков. Однако первой трудностью была невозможность разделить эти полюса. После разрезания полосового магнита не получалось отдельно северного и южного полюсов – получалось два магнита, у каждого из которых был и северный, и южный полюс. Поиски магнитных зарядов («монополей») продолжаются до сих пор, и пока безуспешно. Ампер предложил более естественное объяснение. Поскольку виток с током создает поле, похожее на поле полосового магнита, Ампер предположил, что в веществе, а точнее в атомах, присутствуют заряженные частицы, совершающие круговое движение, и создающие таким образом, круговые «атомные» токи.
Эта идея хорошо согласовалась с предложенной впоследствии моделью атома Резерфорда. Понятно также, почему вещество в обычном состоянии практически не проявляет магнитных свойств. Для того, чтобы поля различных «витков» сложились, они должны быть расположены так, как показано на рисунке, чтобы их поля были сориентированы в одном направлении. Но в силу теплового движения, их направления ориентированы хаотически друг по отношению к другу во всех направлениях. А поскольку магнитные поля складываются по векторному закону, то суммарное поле равно нулю. Это справедливо для большинства металлов и других веществ. Упорядочить атомные токи можно лишь в некоторых металлах, называемых ферромагнетиками. Именно в них магнитные свойства проявляются очень заметно. Многие металлы, например медь и алюминий не проявляют заметных магнитных свойств, например, не могут быть намагничены. Наиболее известный пример ферромагнетика – железо. В нем существуют довольно большие по сравнению с размером атома области (10-6-10-4 см) - домены, в которых атомные токи уже строго упорядочены. Сами области хаотически расположены по отношению друг к другу – металл не намагничен. Помещая его в магнитное поле, мы можем перевести домены в упорядоченное состояние – намагнитить металл, причем, убрав внешнее поле, мы сохраним его намагниченность. В процессе намагничивания домены с ориентацией атомных токов вдоль внешнего поля растут, другие – уменьшаются. Мы видели, что виток с током в магнитном поле поворачивается силой Ампера так, чтобы его магнитное поле установилось по внешнему полю.Это положение равновесия витка, которое он и стремится занять. После того, как внешнее поле выключается, ориентация атомных токов сохраняется. Некоторые сорта стали сохраняют намагниченность очень устойчиво – их них можно делать постоянные магниты. Другие сорта легко перемагничиваются, они годятся для производства электромагнитов. Если поместить в соленоид ферромагнитный стержень, то создаваемое в нем поле увеличится в 10-20 тысяч раз.
Таким образом, магнитное поле всегда создается электрическим током, либо протекающим по проводнику, когда заряды перемещаются на расстояния во много раз больше атомных (такие токи называются макроскопическими), либо микроскопическими (атомными) токами.
Магнитное поле Земли.Одним из первых наблюдений магнитного поля и использования его в прикладных целях было обнаружение магнитного поля Земли. В древнем Китае магнитную стрелку (полосовой магнит) использовали для определения направления на север, что делается и в современных компасах. Очевидно, во внутренней части Земли существуют некие токи, которые и приводят к появлению небольшого (примерно 10-4 Тл) магнитного поля. Если предположить, что оно связано с вращением Земли, внутри нее есть круговые токи вокруг ее оси, и соответствующее магнитное поле (как поле витка) должно быть сориентировано внутри Земли вдоль оси ее вращения. Линии индукции должны выглядеть, как показано на рисунке.
Видно, что северный магнитный полюс Земли находится вблизи ее южного географического полюса. Линии индукции замыкаются во внешнем пространстве, причем вблизи поверхности земли они ориентированы вдоль географических меридианов. Именно вдоль них в направлении на север устанавливается северный конец магнитной стрелки. С магнитным полем Земли связано еще одно важное явление. Из космоса в атмосферу земли приходит большое количество элементарных частиц, некоторые заряжены. Магнитное поле играет роль барьера для их попадания в нижние слои атмосферы, где они могут представлять опасность. Рассматривая движение заряженной частицы в магнитном поле под действием силы Лоренца, мы видели, что она начинает двигаться по винтовой линии вдоль линии индукции магнитного поля. Это и происходит с заряженными частицами в верхних слоях атмосферы. Двигаясь вдоль линий, они «уходят» к полюсам, и входят в атмосферу вблизи географических полюсов. При их взаимодействии с молекулами происходит свечение (испускание света атомами), которое и создает северные сияния. В неполярных широтах они не наблюдаются.
Тангенсные измерительные приборы.Для измерения величины индукции неизвестного магнитного поля (например, Земли) разумно предложить способ сравнения этого поля с каким-нибудь известным. Например, с полем длинного прямого тока. Тангенсный метод дает такой способ сравнения. Предположим, мы хотим измерить горизонтальную составляющую магнитного поля Земли в некоторой точке. Разместим рядом с ней длинный вертикальный провод, чтобы его середина была близко к этой точке, а длина была много больше расстояния до нее (рисунок, вид сверху).
Если ток в проводе не течет, то магнитная стрелка в точке наблюдения установится вдоль поля Земли (на рисунке – вверх, вдоль ВЗ). Будем увеличивать ток в проводе. Стрелка начинает отклоняться влево. Поскольку появляется поле тока ВТ, направленное на рисунке горизонтально. Полное поле направлено по диагонали прямоугольника, как того требует правило сложения векторов ВЗ и ВТ. Когда ток достигнет некоторого значения I0, угол, образуемый стрелкой станет равен 450. Это значит, что выполнилось равенство ВЗ=ВТ. Но поле ВТ нам известно . Измерив x и I0 с помощью амперметра, можно вычислить ВТ, а следовательно и ВЗ. Метод называется тангенсным, потому что выполнено условие .