Интерференция волн. Принцип суперпозиции для волн. Когерентные волны.

Лекция 13. Интерференция света

Модуль 2.3 Волновая оптика

Основные понятия: интерференция волн, когерентность, оптическая разность хода, разность фаз колебаний, ширина интерференционной полосы, полосы равного наклона, полосы равной толщины.

 

План лекции

1. Интерференция волн. Принцип суперпозиции для волн. Когерентные волны.

2. Интерференция света от двух точечных источников.

3. Простые интерференционные схемы.

4. Полосы равного наклона и равной толщины. Отражение от тонких пленок и плоскопараллельных пластинок. Кольца Ньютона. Интерферометры.

Краткое содержание

Волновые свойства света наиболее отчетливо обнаруживают себя в интерференции и дифракции. Эти явления характерны для волн любой природы и сравнительно просто наблюдаются на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию и дифракцию световых волн можно лишь при определенных условиях. Свет, испускаемый обычными (нелазерными) источниками, не бывает строго монохроматическим. Поэтому для наблюдения интерференции свет от одного источника нужно разделить на два пучка и затем наложить их друг на друга. Существующие экспериментальные методы получения когерентных пучков из одного светового пучка можно разделить на два класса.

В методе деления волнового фронта пучок пропускается, например, через два близко расположенных отверстия в непрозрачном экране. Такой метод пригоден лишь при достаточно малых размерах источника.

В другом методе пучок делится на одной или нескольких частично отражающих, частично пропускающих поверхностях. Этот метод деления амплитуды может применяться и при протяженных источниках.

 

Если частоты волн одинаковые, то зависимость от времени будет определяться только разностью начальных фаз колебаний и , каждая из которых в волнах от независимых источников случайным (хаотичным) образом меняется во времени. Если удастся каким либо образом согласовать колебания так, чтобы эта разность не зависела от времени, или медленно менялась во времени, то интенсивность результирующей волны уже не будет равна сумме интенсивностей падающих волн и можно записать:

.

Такие «согласованные» по фазе волны называют когерентными.

Таким образом, две волны будут когерентными, если слагаемое , описывающее перераспределение интенсивности в пространстве, не обращается в нуль.

Когерентными являются, например, одинаково поляризованные волны, если их частоты одинаковы, а разность начальных фаз не зависит от времени. Так как начальная фаза каждого цуга волн – случайная функция времени, то для получения когерентных колебаний необходимо как-то разделить одну световую волну от источника на две, и тогда разность начальных фаз будет равна нулю. Знак усреднения можно снять и записать

,

где. Величину можно рассматривать как разность расстояний, пройденных волнами от источника до места встречи. Эту разность, умноженную на показатель преломления среды, называют оптической разностью хода , а - разностью их фаз в момент встречи. Таким образом, в зависимости от разности фаз или, что тоже самое, в зависимости от разности хода интенсивность в различных точках пространства может изменяться от минимального значения

,

соответствующего до максимального значения

,

соответствующего . Здесь целое число .

Явление, при котором в некоторых точках пространства интенсивность света уменьшается, а в некоторых увеличивается, то есть происходит перераспределение интенсивности в результате сложения волн, называется интерференцией. В области совместного существования двух когерентных волн можно наблюдать интерференционную картину в виде светлых и менее светлых (иногда - темных) полос. Величина , определяемая соотношением

называется контрастностью полос.