Вторая теорема Больцано-Коши

Первая теорема Больцано-Коши

Вторая теорема Больцано-Коши

Первая теорема Больцано-Коши

План

Лекция 7. Функции, непрерывные на сегменте (продолжение)

Вопросы

  1. Какая СЛАУ называется неоднородной?
  2. Теорема об LU-разложении матрицы.
  3. Для любой ли матрицы существует LU-разложение?
  4. Сколько различных LU-разложений существует для матрицы?
  5. Метод решения СЛАУ, основанный на LU-разложении матрицы системы.
  6. Для каких матриц существует симметричное разложение?
  7. Какая матрица называется полложительно определенной?
  8. Существует ли для положительно определенной матрицы LU-разложение?
  9. Метод Холесского.

 

 

Теорема 1.Пусть функция определена и непрерывна на , а на концах сегмента принимает значения разных знаков, то есть . Тогда существует такая точка , что .

Доказательство. Пусть для определенности . Разобьем точкой пополам (рис.1). Если , то все доказано. Если , то на концах одного из сегментов , функция будет иметь значения разных знаков. Выберем именно этот сегмент и обозначим его (рис.1). Для него: . Будем обозначать длину сегмента как . Тогда .

Сегмент поделим пополам точкой . Если , то все доказано. Если , то на концах или функция будет иметь значения разных знаков. Выберем именно этот сегмент и обозначим его . Для него: , .

Продолжим этот процесс. Тогда на м шаге возможны две ситуации:

1. , тогда все доказано;

2. . На концах или функция будет иметь значения разных знаков. Выберем именно этот сегмент и обозначим его . Для него: , .

Предположим, что ни на каком шаге функция в средней точке рассматриваемого сегмента не имеет значения 0. В ходе доказательства мы получили бесконечную последовательность вложенных сегментов:

 

, (1)

 

для которых , поэтому

. (2)

 

Из (2) по определению границы последовательности вытекает, что

для , что для : , т.е. для в построенной последовательности (1) вложенных сегментов существуют такие, длина которых будет меньше . Тогда по лемме о вложенных сегментах из этого будет вытекать, что последовательность (1) вложенных сегментов имеет лишь одну общую точку. Обозначим эту точку ; для : , а поскольку длины сегментов стремятся к нулю, когда (равенство (2)), то

. (3)

 

Из (3) очевидно, что мы имеем две сходящихся последовательности: , , которые сходятся к точке . Поскольку по условию теоремы функция непрерывна везде на , то она непрерывна и в точке . Тогда по определению непрерывности функции по Гейне:

 

 

 

 

Поскольку для : , то

. (4)

Поскольку для : , то

. (5)

 

Сравнивая (4) и (5), имеем:

.

 

Таким образом, искомая точка найдена, теорема доказана.

 

Теорема 2. Пусть функция определена и непрерывна на , , . Тогда для , что

 

.

 

Доказательство. Пусть для определенности (если совпадает с или с , тогда как можно взять или - все доказано).

Построим вспомогательную функцию

.

 

Рассмотрим ее на . На этом сегменте - непрерывна, потому что является разностью двух непрерывных функций и , к тому же:

 

,

 

,

 

т.е. на концах сегмента функция принимает значения разных знаков. Тогда по предыдущей теореме , что , т.е. , а тогда , что и нужно было доказать.

Следствие. Пусть функция определена и непрерывна на , тогда множество ее значений - сегмент.

Доказательство. По второй теореме Вейерштрасса достигает на своих супремума и инфимума. Обозначим:

 

.

Тогда

;

 

.

 

По второй теореме Больцано-Коши функция принимает все промежуточные значения, которые находятся между и , то есть областью значений является сегмент , что и нужно было доказать.