Связность (взаимосвязь единиц знаний).

Структурированность (рекурсивная структурированность) знаний.

Определяет свойство декомпозиции для информационной единицы, т.е. при необходимости такая информационная единица может быть расчленена на более мелкие единицы или, наоборот, объединена в более крупные системы. Это свойство предусматривает установку отношений принадлежности элементов к классу и родово-видовых отношений типа часть – целое, род – вид.

Третий признак – связность – характеризует возможность установки между информационными единицами самых разнообразных отношений (четких, нечетких бинарных, составных), которые определяют семантику и прагматику связей явлений и фактов, а также отношений, определяющих смысл системы в целом. В отличие от структурированности, характеризующей структуру знаний, система взаимосвязей (связность) определяет закономерности явлений, процессов, фактов, причинно-следственные отношения между ними, порождает ситуационные системы классификации.

 

 

Метрики характеризуют близость-удаленность информационных единиц. И хотя сейчас нет единого мнения относительно структуры семантического пространства с метрикой, все специалисты-разработчики экспертных систем считают, что знания не могут быть бессистемным «сборищем» отдельных информационных единиц, а должны быть взаимосвязанными и взаимозависимыми в некотором общем для них когнитивном семантическом пространстве.

 

Активность – это принципиальное отличие знаний от данных. С самого начала своего развития программирование опиралось на первичность процедур и вторичность данных. Процедурам отводилась роль активизирующего начала, они отражали способ решения задачи, активизировали необходимые данные, пассивно лежащие в памяти системы. Для человека характерна познавательная активность. Он использует те или иные процедуры потому, что в его знаниях возникла определенная ситуация, т.е. для когнитивных структур в памяти человека характерна внутренняя активность. То или иное соотношение между информационными единицами побуждает к тем или иным действиям, для реализации которых необходимо выполнить определенные процедуры. Активность базы знаний позволяет экспертной системе формировать мотивы, ставить цели и строить процедуры их решения.

 

 


Следует упомянуть о функциональной целостности знаний, т.е. возможности выбора желаемого результата, времени и средств по­лучения результата, средств анализа достаточности полученного ре­зультата.


Перечисленные пять особенностей ИЕ определяют ту грань, за которой данные превращаются в знания, а базы данных перераста­ют в базы знаний (БЗ).

Совокупность средств, обеспечивающих работу со знаниями, образует систему управления базой знаний (СУБЗ). Однако к БЗ, в которых в полной мере была бы реализова­на внутренняя интерпретируемость, структуризация, связность, введена семантическая мера и обеспечена активность знаний, еще необходимо проделать определенный путь.


Таким образом, выполнение программ в ИнС должно иниции­роваться текущим состоянием информационной базы. Появление в базе фактов или описаний событий, установление связей может стать источником активности системы.
Следует упомянуть о функциональной целостности знаний, т.е. возможности выбора желаемого результата, времени и средств по­лучения результата, средств анализа достаточности полученного ре­зультата.

Все приведенные выше качественные свойства знаний касаются в основном уровня Зн1 и связаны со сложной природой знания, изучение которой происходит на междисциплинарном стыке таких наук, как кибернетика, лингвистика, психология и т.д.




Знания иногда называют хорошо структурированными данными метаданными, данными о данных и т.д..

Сравнение данных и знаний можно проиллюстрировать сравне­нием ИнС и обычных программных систем.

ИнС существенным образом отличаются от традиционных про­граммных систем не только наличием БЗ, в которой знания хранятся и модифицируются в форме, понятной специалистам пред­метной области (именно поэтому вопросы разработки БЗ являются центральными при создании ИнС).

Дело в том, что стиль программирования ИнС непохож на стиль традиционного программирования с использованием обычных алгоритмических языков. На рис. 1.20 и 1.21 и в табл. 1.3 пока­заны характерные различия между ИнС и обычными программными системами.
Следует добавить, что кроме общих выделенных особенностей разработки ИнС и традиционных программных систем каждый тип ИнС обладает, как правило, своим собственным стилем про­граммирования, что затрудняет его использование для других
НН.

Тем не менее в качестве основного вывода по сравнительной характеристике ИнС и традиционных программных систем можно отметить, что обычное для классических систем соотношение ДАННЫЕ + АЛГОРИТМЫ = ПРОГРАММА заменяется на новую архитектуру, основу которой составляет БЗ и интерпретатор БЗ (машина логического вывода), т.е. ЗНАНИЯ + ВЫВОДЫ = СИСТЕМА.