Напряженное и деформированное состояние при растяжении и сжатии

Рис.2.9

 

вторым слагаемым, в силу его малости, можно пренебречь, и тогда

. (2.14)

Полная работа равна сумме элементарных работ, тогда, при линейной зависимости “нагрузка - перемещение”, работа внешней силы Р на перемещении будет равна площади треугольника ОСВ (рис. 2.9), т.е.

. (2.15)

В свою очередь, когда напряжения и деформации распреде­лены по объему тела V равномерно (как в рассматриваемом случае) потенциальную энергию деформирования стержня можно записать в виде:

. (2.16)

Поскольку, в данном случае имеем, что , и , то

, (2.17)

т.е. подтверждена справедливость (2.12).

С учетом (2.8) для однородного стержня с постоянным попе­речным сечением и при Р = const из (2.17) получим:

. (2.18)

Единицей измерения потенциальной энергии деформации является 1Hм = 1Дж.

 

Рассмотрим более подробно особенности напряженного состоя­ния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, со­ставляющей угол с плоскостью нормального сечения (рис. 2.10, а).

Из условия , записанного для отсеченной части стержня (рис. 2.10, б), получим:

, (2.19)

где A - площадь поперечного сечения стержня, - пло­щадь наклонного сечения. Из (2.19) легко установить:

. (2.20)

Раскладывая напряжение р по нормали и касательной к на­клонной площадке (рис. 2.10, в), с учетом (2.20) получим:

; . (2.21)