Геометрическая интерпретация производной.

 

Пусть на плоскости xOy задана кривая, описываемая уравнением . Проведём касательную к кривой в точке . Возьмём на кривой точку M1 и проведём секущую M0M1 (рис. 15.1). При изменении точки M1 положение секущей будет меняться.

Рис. 15.1.

 

Определение 15.2. Если при стремлении точки к фиксированной точке секущая не зависимо от способа стремления точки к точке стремится к одному и тому же предельному положению, то прямая, являющаяся этим предельным положением, называется касательной к кривой в точке .

 

Получим уравнение этой касательной. Обозначим координаты точки M1 через и пусть – угол наклона секущей к оси Ox. Тогда (см. рис. 15.1) угловой коэффициент секущей M0M1 равен

. (15.3)

Если же устремить точку M1 к точке M0, то есть устремить к нулю, то в случае существования производной угол будет стремиться к некоторому пределу , где . Следовательно, прямая, составляющая с положительным направлением оси Ox угол и проходящая через точку M0 и будет касательной. Её угловой коэффициент .

Запишем уравнение касательной к графику в точке :

. (15.4)

 

Определение 15.3. Прямая называется перпендикулярной к кривой в точке , если она перпендикулярна касательной к кривой в точке . Эта прямая называется также нормалью к этой кривой.

 

Угловой коэффициент нормали к кривой в точке M0 при , и уравнение нормали к графику функции, проходящему через точку запишется в следующем виде:

. (15.5)

Если , то уравнение нормали .

Замечание 15.1. Если в точке и , то касательная к кривой в точке существует, она вертикальна и её уравнение . Уравнение соответствующей нормали .☼