Электромагнитное взаимодействие

Электромагнитное взаимодействие - это тип физического взаимодействия, характеризуемый участием электромагнитного поля. Электромагнитное поле либо излучается, либо поглощается при взаимодействии, либо переносит взаимодействие между телами.

Электрические и магнитные явления были известны человечеству с древности. Само понятие «электрические явления» восходит к Древней Греции (вспомните: два куска янтаря («электрон»), потертые тряпочкой, отталкиваются друг от друга, притягивают мелкие предметы…). Впоследствии было установлено, что существует как бы два вида электричества: положительное и отрицательное.

Что касается магнетизма, то свойства некоторых тел притягивать другие тела были известны еще в далекой древности, их назвали магнитами. Свойство свободного магнита устанавливаться в направлении «Север-Юг» уже во II в. до н.э. использовалось в Древнем Китае во время путешествий. Первое же в Европе опытное исследование магнита было проведено во Франции в 13 в. В результате было установлено наличие у магнита двух полюсов. В 1600 г. Гильбертом была выдвинута гипотеза о том, что Земля представляет собой большой магнит: эти и обусловлена возможность определения направления с помощью компаса.

18-й век, ознаменовавшийся становлением МКМ, фактически положил начало и систематическим исследованиям электрических явлений. Так было установлено, что одноименные заряды отталкиваются, появился простейший прибор – электроскоп. В середине 18 в. была установлена электрическая природа молнии (исследования Б. Франклина, М. Ломоносова, Г. Рихмана, причем заслуги Франклина следует отметить особо: он является изобретателем молниеотвода; считается, что именно Франклин предложил обозначения "+" и "–" для зарядов).

В 1759 г. английский естествоиспытатель Р. Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит из целого числа элементарных зарядов е=1,6×10-19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарногоотрицательного заряда (электрон, имеющий массу moe=9,1×10-31). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порций q=± ne, где n – целое число.

В результате многочисленных исследований электрических явлений, предпринятых в 18-19 вв. был получен ряд важнейших законов.

Закон сохранения электрического заряда: в электрически замкнутой системе сумма зарядов есть величина постоянная. (Т.е. электрические заряды могут возникать и исчезать, но при этом обязательно появляется и исчезает равное количество элементарных зарядов противоположных знаков). Величина заряда не зависит от его скорости.

, где e - относительная диэлектрическая проницаемость среды (в вакууме e = 1). Силы Кулона существенны до расстояний порядка 10-15м (нижний предел). На меньших расстояниях начинают действовать ядерные силы (т.н. сильное взаимодействие). Что касается верхнего предела, то он стремится к :.

Исследование взаимодействия зарядов, проводившееся в 19 в. замечательно еще и тем, что вместе с ним в науку вошло понятиеполя. Начало этому было положено в работах М. Фарадея. Поле неподвижных зарядов получило название электростатического. Электрический заряд, находясь в пространстве, искажает его свойства, т.е. создает поле. Силовой характеристикой электростатического поля является его напряженность . Электростатическое поле является потенциальным. Его энергетической характеристикой служит потенциал j.

Открытие Эрстеда. Природа магнетизма оставалась неясной до конца 19 в., а электрические и магнитные явления рассматривались независимо друг от друга, пока в 1820 г. датский физик Х. Эрстед не открыл магнитное поле у проводника с током. Так была установлена связь электричества и магнетизма. Силовойхарактеристикой магнитного поля является напряженность . В отличие от незамкнутых линий электрического поля силовые линии магнитного поля замкнуты, т.е. оно является вихревым.

Электродинамика. В течение сентября 1820 г. французский физик, химик и математик А.М. Ампер разрабатывает новый раздел науки об электричестве – электродинамику.

Законы Ома, Джоуля-Ленца: важнейшими открытиями в области электричества явились открытый Г. Омом (1826) закон I=U/R и для замкнутой цепи I= ЭДС/(R+r), а также закон Джоуля-Ленца для количества тепла, выделяющегося при прохождении тока по неподвижному проводнику за время t: Q = IUT.

Работы М.Фарадея. Исследования английского физика М.Фарадея (1791-1867) придали определенную завершенность изучению электромагнетизма. Зная об открытии Эрстеда и разделяя идею о взаимосвязи явлений электричества и магнетизма, Фарадей в 1821 г. поставил задачу «превратить магнетизм в электричество». Через 10 лет экспериментальной работы он открыл закон электромагнитной индукции. (Суть закона: изменяющееся магнитное поле приводит к возникновению ЭДС индукции ЭДСi = k×DФm/Dt, где DФm/Dt – скорость изменения магнитного потока сквозь поверхность, натянутую на контур). С 1831 по 1855 гг. выходитв свет в виде серий главный труд Фарадея «Экспериментальные исследования по электричеству».

Работая над исследованием электромагнитной индукции, Фарадей приходит к выводу о существовании электромагнитных волн. Позже, в 1831 г. он высказывает идею об электромагнитной природе света.

Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865 г. теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).

Концепция силовых линий, предложенная Фарадеем, долгое время не принималась всерьез другими учеными. Дело в том, что Фарадей, не владеядостаточно хорошо математическим аппаратом, не дал убедительного обоснования своим выводам на языке формул. («Это был ум, который никогда не погрязал в формулах – сказал о нем А. Эйнштейн).

Блестящий математик и физик Джеймс Максвелл берет под защиту метод Фарадея, его идею близкодействия и поля, утверждая, что идеи Фарадея могут быть выражены в виде обычных математических формул, и эти формулы сравнимы с формулами профессиональных математиков.

Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» (1861-1865) и «Динамическая теория поля (1864-1865). В последней работе и была дана система знаменитых уравнений, которые (по словам Герца) составляют суть теории Максвелла.

Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введена новая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью, материальным носителем взаимодействия.

Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

Система уравнений для электрических и магнитных полей, разработаннаяМаксвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

Уравнение Утверждение
div E ~ q Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона
div H = 0 Магнитные заряды не существуют
  Переменное магнитное поле возбуждает электрический ток
  Магнитное поле возбуждается токами и переменными электрическими полями

Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

Вершиной научного творчества Максвелла явился «Трактат по электричеству и магнетизму».

Развитие корпускулярно-континуальных представлений в трудах Максвелла.Развивая теорию электромагнитного поля, Максвелл не отвергал и дискретность материи. Он писал: «Даже атом, когда мы приписываем ему способность вращаться, можно представлять состоящим из многих элементарных частиц.» Это было сказано в 1873 г. задолго до открытия электрона. Таким образом, Максвелл не отдавал предпочтения ни дискретности, ни непрерывности материи, допуская возможность и того и другого.

Разработав ЭМКМ, Максвелл завершил картину мира классической физики («начало конца классической физики»). Теория Максвелла является предшественницей электронной теории Лоренца и специальной теории относительности А. Эйнштейна.

Голландский физик Г. Лоренц (1853-1928) считал, что теория Максвелла нуждается в дополнении, так как в ней не учитывается структура вещества. Лоренц высказал в этой связи свои представления об электронах, т.е. крайне малых электрически заряженных частицах, которые в громадном количестве присутствуют во всех телах.

В 1895 г. Лоренц дает систематическое изложение электронной теории, опирающейся, с одной стороны, на теорию Максвелла, а с другой – на представления об «атомарности» (дискретности) электричества. В 1987 г. был открыт электрон, и теория Лоренца получила свою материальную основу.

Электромагнитное взаимодействие ответственно за существование основных кирпичиков вещества - атомов и молекул. Оно определяет взаимодействие положительно заряженных ядер и отрицательно заряженных электронов в этих микросистемах. Поэтому к электромагнитному взаимодействию сводится большинство сил, которые наблюдаются в макроскопических явлениях: силы упругости и трения, поверхностного натяжения в жидкостях и др.

Свойства различных агрегатных состояний вещества, химические превращения, электрические, магнитные и оптические явления определяются электромагнитным взаимодействием.

Электромагнитную природу имеет явление сверхпроводимости (сверхпроводимость - полное отсутствие сопротивления постоянному току у многих металлов и металлических сплавов при температурах, близких к абсолютному нулю). Электромагнитную природу имеет и явление сверхтекучести (сверхтекучесть - это свойство жидкого гелия протекать без трения сквозь тонкие капилляры и щели при температуре, ниже 2,17 К).

Электромагнитным взаимодействием обусловлены упругое и неупругое рассеяние электронов, позитронов и мюонов, процессы расщепления ядер фотонами и др.

Проявление электромагнитного взаимодействия широко используется в электротехнике, электронике, оптике, квантовой электронике.

Таким образом, электромагнитное взаимодействие обуславливает подавляющее большинство явлений окружающего нас мира.

Явления, в которых участвуют слабые, медленно меняющиеся электромагнитные поля, управляются законами классической электродинамики (слабость электромагнитного поля означает, что его энергия e<<mc2, где mc2 энергия покоя электрона, m - масса электрона; медленное изменение электромагнитного поля означает, что w<<e, где w -круговая частота изменения поля).

Для сильных или быстроменяющихся полей (e~ mc2, e~ w)определяющую роль играют квантовые явления. Кванты электромагнитного поля называются фотонами или - квантами. Они характеризуют корпускулярные свойства электромагнитного поля. Масса покоя фотона равна нулю, его электрический заряд тоже равен нулю, а скорость равна скорости света.