Операции над высказываниями.

Высказывания и операции над высказываниями.

Математическая логика

 

Высказыванием называется повествовательное предложение, о котором можно сказать истинно оно или ложно.

1. Москва - столица России.

2. Если студент учится на отлично, то он получит красный диплом.

3. Осадки - это снег или дождь.

4. Курица – не птица.

5. Пейте томатный сок.

6. Я лгу.

7. 23<5

Высказываниями являются 1, 2, 3,4 и 7 предложения. Предложение 5 не является высказыванием, так как про него нельзя сказать истинно оно или ложно. Предложение 6 является логическим парадоксом.

Элементарным высказыванием называется высказывание, которое содержит одно утверждение (предложения 1,7).

Сложное (составное) высказывание состоит из элементарных высказываний связанных с помощью следующих предлогов и частиц: И, НЕ, ИЛИ, ЕСЛИ - ТО, ТОГДА И ТОЛЬКО ТОГДА и другие. Предложения 2,3,4 являются сложными высказываниями.

 

Отрицанием высказывания х называется новое высказывание, которое истинно, если высказывание ложное и наоборот. Таблица истинности операции отрицания имеет вид:

Дизъюнкцией двух высказываний x и y(логическое «или»)называется новое высказывание, которое будет истинным тогда когда, когда хотя бы одно из высказываний будет истинным.

 

Конъюнкцией двух высказываний x и y(логическое «и»)называется новое высказывание, которое будет истинным тогда когда, когда оба высказывания истины. Обозначение операции конъюнкция - &(

 

 

Импликацией двух высказываний x и y(«если – то») называется новое высказывание, которое ложно тогда, когда х(предпосылка)- истинно, а у(следствие)- ложно.

 

 

Эквивалентностью двух высказываний x и y(«тогда и только тогда») называется новое высказывание, которое будет истинно , если высказывания х и у будут одновременно истинны или ложны.

 

 

Неодназночностью (суммой по модулю два) двух высказываний x и y(«тогда и только тогда») называется новое высказывание, которое будет истинно тогда когда одно из высказываний х или у истинно, а другое ложно.

 

 

Штрих Шеффера (логическое «и - не») высказываний x и y - это новое высказывание, которое будет ложно тогда и только тогда когда оба высказывания истинны.

 

 

Стрелка Пирса (логическое «или - не») высказываний x и y - это новое высказывание, которое будет истинно тогда и только тогда когда оба высказывания ложны.

 

 

Для операций справедливы следующие приоритеты: ù, &, Ú, ®, «.