Соответствия и их свойства
Тема 1.3. Соответствия и функции
Резюме по теме
Вопросы для повторения
1.Что называется унарным отношением?
2.В чем состоит отличие унарного и бинарного отношений?
3.Перечислите свойства бинарных отношений?
4.Назовите способы задания бинарных отношений?
5.Как выглядит матрица отношения обладающего свойством симметричности?
6.Дайте определение отношению эквивалентности?
7.Что понимают под n-местным отношением?
8.В чем заключается свойство рефлексивности?
9.В чем состоит различие между отношениями строгого и нестрогого порядков?
10.В каком случае отношение называется транзитивным?
11.Есть ли антитранзитивное отношение?
Рассмотрены основные понятия отношений на примере наиболее изученных и чаще употребляемых бинарных отношений. Показаны способы задания бинарных отношений. Приведены свойства бинарных отношений, каждое из которых было охарактеризовано. Рассмотрены отношения эквивалентности и порядка.
Цель: ознакомиться и разобраться с понятиями соответствие и функция.
Задачи:
1. Рассмотреть соответствия и изучить их свойства.
2. Рассмотреть взаимнооднозначные соответствия и мощности множеств.
3. Дать определения понятиям функция и отображение.
4. Рассмотреть понятие операция и виды операций.
5. Разобраться с понятиями гомоморфизм и изоморфизм.
Соответствие – способ задания взаимосвязей, взаимодействий между элементами множества (наряду с отношениями). Частными случаями соответствий являются функции, отображения, преобразования, операции и др.
Соответствием между множествами А и В (рис. 1.7) называется некоторое подмножество G их декартова произведения: .
Если , то говорят, что соответствует а при соответствии .
Область определения соответствия G – множество пр1G={а:(а,b) ÎG}. Область значений соответствия G - множество пр2G={b:(а,b) ÎG}.
Рис. 1.7. Соответствие G между множествами А и B
В принятых обозначениях, каждый элемент , соответствующий данному элементу называется образом при соответствии , наоборот, элемент называется прообразом элемента при данном соответствии.
Свойства соответствий :
1) Соответствие называется полностью определённым, если , то есть каждый элемент множества имеет хотя бы один образ во множестве ; в противном случае соответствие называется частичным.
2) Соответствие называется сюръективным, если , то есть если каждому элементу множества соответствует хотя бы один прообраз во множестве .
3) Соответствие называется функциональным (однозначным), если любому элементу множества соответствует единственный элемент множества .
4) Соответствие называется инъективным, если оно является функциональным, и при этом каждый элемент множества имеет не более одного прообраза.
5) Соответствие называется взаимнооднозначным (биективным), если любому элементу множества соответствует единственный элемент множества , и наоборот. Можно сказать также, что соответствие является взаимнооднозначным, если оно является полностью определённым, сюръективным, функциональным, и при этом каждый элемент множества имеет единственный прообраз.