Последовательный колебательный контур

Резонансные явления в электрических цепях

Применение последовательного колебательного контура

Энергетические соотношения в последовательном колебательном контуре при резонансе

Влияние внутреннего сопротивления источника сигнала на АЧХ контура

Последовательный колебательный контур

Резонансные явления в электрических цепях

Последовательный КОЛЕБАТЕЛЬНЫй КОНТУР

ЛЕКЦИЯ 15

 

 

План лекции:

Резонансом электрической цепи называют явление обращения в нуль её реактивного сопротивления. Частоту, на которой имеет место этот факт, называют резонансной. Резонанс может возникать только в цепях, имеющих хотя бы по одному реактивному элементу разного типа проводимости.

Резонансы могут иметь место как в отдельных ветвях электрической цепи, так и в контурах. Поэтому в цепях с несколькими реактивными элементами разного типа может быть несколько резонансных частот.

В радиотехнике резонансные явления в электрических цепях широко используют для выделения полосы частот и усиления сигналов.

 

Цепь с последовательным соединением элементов называют последовательным колебательным контуром. Так как реальные индуктивности и ёмкости имеют потери, то это учтено на схеме последовательно включенным в цепь малым эквивалентным сопротивлением потерь (рис. 15.1).

Полное сопротивление этой цепи будет равно

где – модуль, и – активная и реактивная составляющие, – фаза полного сопротивления.

 

Рис. 15.1. Последовательный колебательный контур

 

На резонансной частоте реактивная составляющая полного сопротивления обращается в нуль, то есть выполняется условие

Отсюда получаем формулу для расчёта резонансной частоты через параметры последовательного колебательного контура

На частотах меньше резонансной реактивное сопротивление цепи отрицательно, то есть носит ёмкостный характер, так как сопротивление ёмкости больше сопротивления индуктивности и является преобладающим. На частотах больше резонансной реактивное сопротивление последовательного колебательного контура положительно и имеет индуктивный характер, так как в этом случае сопротивление индуктивности становится больше сопротивления ёмкости.

Преобразуем выражение (15.1) с учётом введённого понятия резонансной частоты:

Величину , имеющую размерность сопротивления, называют волновым или характеристическим сопротивлением контура, причём

Отношение характеристического сопротивления к сопротивлению потерь называют добротностью контура и обозначают символом , а обратную ему величину – затуханием:

Контуры низкого качества имеют добротность меньше 50. Для контуров среднего качества выполняется соотношение , для контуров хорошего качества – и для контуров высокого качества – .

Выражение в круглых скобках в формуле (15.4) обозначают греческой буквой и называют относительной расстройкой контура

По смыслу, относительная расстройка характеризует в относительных единицах отклонение частоты источника сигнала от резонансной частоты контура.

С учётом введённых обозначений формулу сопротивления (15.4) можно записать в более компактной форме:

Ток в цепи можно найти по закону Ома:

где – начальная фаза источника эдс, – фаза полного сопротивления в другой форме записи.

На резонансной частоте ток максимален и равен

Нормированная амплитудно-частотная (АЧХ)

и фазочастотная характеристики (ФЧХ)

тока приведены на рис. 15.2.

На резонансной частоте относительная расстройка (15.7) равна нулю. Поэтому

Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений. Векторная диаграмма напряжений для контура на частоте резонанса приведена на рис. 15.3.

Область частот, на границах которой ток уменьшается в раз относительно своего максимального значения, называют полосой пропускания. На границах полосы пропускания согласно формуле (15.9) выполняется условие

 

Рис. 15.2. Амплитудно-частотная (а) и фазочастотная (б) характеристики тока в последовательном колебательном контуре

 

Рис. 15.3. Векторная диаграмма последовательного колебательного контура на резонансной частоте

Отсюда получаем значения относительной расстройки на границах полосы пропускания

Практически всегда можно считать, что . Поэтому является малой величиной и без большой погрешности, используя формулу (15.7), относительную расстройку на границах полосы пропускания можно заменить приближённым выражением:

где , а – полоса пропускания контура. Объединяя выражения (15.14) и (15.16), окончательно получаем достаточно точную формулу расчёта полосы пропускания

Для сравнения контуров друг с другом удобно использовать амплитудно-частотные характеристики, построенные в зависимости от относительной расстройки (рис. 15.4), а не от относительной частоты как на рис. 15.2.

 

Рис. 15.4. Амплитудно-частотные характеристики последовательного колебательного контура в зависимости от относительной расстройки

Следует обратить внимание на то, что величина напряжения на ёмкости

достигает максимума на частоте меньше резонансной, а величина напряжения на индуктивности достигает максимума на частоте больше резонансной.