Аппаратура для геотермических исследований

Принципы решения прямых и обратных задач терморазведки

Решение прямых задач терморазведки, то есть расчет аномалий теплового потока над нагретыми телами простой геометрической формы (шар, столб, цилиндр, пласт и др.) осуществляется по формулам типа (78). Для более сложных физико-геологических моделей (ФГМ), например, теплового поля над реальными средами, используются программы математического моделирования геотермии (численные расчеты). При этом должны быть известны геометрические параметры разреза по данным комплекса геолого-геофизических методов и лабораторным измерениям тепловых свойств как объектов поиска, так и вмещающей среды.

Решение обратных задач терморазведки сводится к определению параметров объектов (среды), создавших тепловые аномалии, путем сравнения их с теоретически рассчитанными в ходе математического моделирования для меняющихся геометрических параметров и тепловых свойств ФГМ. Параметры совпавшей модели можно перенести на изучаемый объект. Как и в любом геофизическом методе, в геотермии обратная задача решается не однозначно. Поэтому при решении обратных задач может получиться несколько ФГМ. В ходе геологического истолкования результатов из них можно выбрать те (или ту), которые в наибольшей степени отвечают всем известным геолого-геофизическим данным.

Для геотермических исследований используют разного рода тепловизоры, термометры, термоградиентометры и тепломеры.

Тепловизорыиспользуются для дистанционных аэрокосмических — радиотепловых и инфракрасных съемок (РТС и ИКС). Они работают в тех участках спектра длин электромагнитных волн от микрометрового до миллиметрового диапазона, где имеются так называемые окна прозрачности для разной облачности. Фоточувствителъными элементами (фотодетекторами) тепловизора служат особые кристаллы, чувствительные к электромагнитному излучению определенных длин электромагнитных волн.

Существуют также портативные переносные тепловизоры, в которых интенсивность инфракрасной съемки (ИКС) определяется визуально по цифровым индикаторам. Тепловизоры-спектрометры содержат устройства для спектрального разделения принятых излучений на разных частотах. В тепловизорах для аэрокосмической съемки имеется сканирующее электронно-механическое устройство для развертки фотодетектора перпендикулярно к направлению полета носителя техники, чтобы осуществить развертку изображения по строкам и кадрам, т. е. провести обзорную площадную съемку. Обработка информации проводится с помощью ЭВМ.

Термометрыслужат для измерения температуры пород или воды в скважинах (шпурах) или донных осадках. Чувствительным элементом таких термометров являются термочувствительные датчики, в качестве которых используются терморезисторы, полупроводниковые резисторы-термисторы, термочувствительные пъезокристаллы, включаемые в измерительные мостовые схемы с источником тока. Существуют шпуровые, скважинные и донные термометры с разной инерционностью (измерения могут длиться до 25 мин), с погрешностью измерений температур до ±0,02 °С и с градуировочной точностьюдо ±0,01°С.