Методы трассировки лучей

Прямая трассировка. В методе прямой трассировки генерируется пучок лучей, выходящих из источника во всевозможных направлениях.

Большинство лучей, испущенных источником, не попадает в приемник, а значит, и не влияет на формируемое в нем изображение. Лишь очень малая часть лучей после всех отражений и преломлений в конце концов попадает в приемник, создавая изображение сцены в его рецепторах. На шероховатых поверхностях возникает множество диффузно отраженных лучей. Все их нужно программно генерировать и отслеживать, что лавинообразно усложняет задачу трассировки.

Прохождение луча в неидеальной среде сопровождается рассеянием и поглощением световой энергии на ее микрочастицах. Эти физические процессы чрезвычайно трудно адекватно моделировать на ЭВМ с ее конечными вычислительными ресурсами. На практике ограничиваются применением коэффициента затухания энергии луча на единицу пройденного им расстояния. Аналогично вводятся коэффициенты уменьшения энергии луча при его отражении и преломлении на поверхности раздела сред. С учетом этих коэффициентов отслеживается уменьшение энергии всех первичных и вторичных лучей в процессе их блуждания в пространстве сцены. Как только энергия некоторого луча становится меньше заданного абсолютного уровня или уменьшается в заданное число раз, трассировка данного луча прекращается.

Таким образом, главными недостатками метода прямой трассировки являются его большая трудоемкость и малая эффективность. При реализации метода большая часть работы по расчету пересечений лучей с объектами оказывается проделанной впустую.

Обратная трассировка.Метод обратной трассировки разработан в 80-х годах. Основополагающими считаются работы Уиттеда и Кея.

Для отсекания лучей, не попавших в приемник, достаточно рассматривать наблюдателя в качестве источника обратных лучей. Первичным лучом будет считаться луч V от наблюдателя к какой-либо точке на поверхности объекта.

По рассмотренным выше методикам рассчитываются вторичные, третичные и т.д. лучи. В результате для каждого первичного луча строится дерево трассировки, ветви которого составляют вторичные лучи. Ветвление трассы заканчивается, если:

● луч выходит за пределы сцены,

● луч встречается с непрозрачным телом, поглощающим свет,

● луч попадает в источник света,

● интенсивность луча падает ниже порога чувствительности,

● число расщеплений первичного луча становится слишком большим для имеющихся машинных ресурсов.

Результирующая прямая световая энергия (цвет и интенсивность), попавшая в приемник из направления V, слагается из энергий терминальных вершин дерева с учетом их потерь при распространении в оптических средах.

Метод обратной трассировки фактически аккумулирует все лучи, в действительности приходящие в приемник из определенного направления независимо от их начала. Это позволяет видеть и изображать на экране:

● непрозрачные объекты, поглощающие обратные лучи;

● прозрачные объекты, через которые благодаря преломлению наблюдателю видны другие объекты;

● отражения объектов на зеркальных поверхностях, в том числе и блики, соответствующие попаданию обратных лучей в источник света;

● тени, образующиеся в точках поверхности, заслоненных от источника другими объектами;

● другие разнообразные оптические эффекты.

Количество "зондирующих" обратных лучей, подвергаемых трассировке, ограничено числом точек на поверхностях объектов сцены, видимых из точки расположения наблюдателя и перебираемых с конечным шагом, зависящим от разрешения экрана. Благодаря этому объем вычислительных затрат в методе обратной трассировки существенно уменьшается по сравнению с методом прямой трассировки. Возможно комбинирование обоих методов для оптимизации алгоритмов и снижения их трудоемкости.

Алгоритмы трассировки носят характер рекурсивной процедуры, которая вызывает саму себя при появлении вторичного луча (анализируемый луч отражается или преломляется). Большая часть вычислений при реализации методов трассировки приходится на расчет пересечений лучей с поверхностями, в связи с чем они применяются для изображения оптических эффектов в сценах с небольшим числом объектов.

При практической реализации метода обратной трассировки вводят нижеприведенные ограничения. Некоторые из них необходимы, чтобы можно было в принципе решить задачу синтеза изображения, а некоторые ограничения позволяют значительно повысить быстродействие трассировки.

Ограничения метода обратной трассировки:

1. Среди всех типов объектов выделим источники света. Они могут только излучать свет, но не могут его отражать или преломлять. Обычно рассматриваются точечные источники.

2. Свойства отражающих поверхностей описываются суммой двух компонентов: диффузного и зеркального.

3. Зеркальность, в свою очередь, также описывается двумя составляющими. Первая (reflection) учитывает отражение от других объектов, не являющихся источниками света. Строится только один зеркально отраженный луч r для дальнейшей трассировки. Вторая компонента (specular) означает световые блики от источников света. Для этого направляются лучи на все источники определяются углы, образуемые этими лучами с зеркально отраженным лучом обратной трассировки (r). При зеркальном отражении цвет точки поверхности определяется цветом того, что отражается. В простейшем случае зеркало не имеет собственного цвета поверхности.

4. При диффузном отражении учитываются только лучи от источников света. Лучи от зеркально отражающих поверхностей игнорируются. Если луч, направленный на данный источник света, закрывается другим объектом, значит, данная точка объекта находится в тени. При диффузном отражении цвет освещенной точки поверхности определяется собственным цветом поверхности и цветом источников света.

5. Для прозрачных (transparent) объектов обычно не учитывается зависимость коэффициента преломления от длины волны. Иногда прозрачность вообще моделируют без преломления, т.е. направление преломленного луча t совпадает с направлением падающего луча.

6. Для учета освещенности объектов светом, рассеиваемым другими объектами, вводится фоновая составляющая (ambient).

7. Для завершения трассировки вводят некоторое пороговое значение освещенности, которое уже не должно вносить вклад в результирующий цвет, либо ограничивают число итераций.

Положительные черты метода обратной трассировки:

● универсальность, применимость для синтеза изображений достаточно сложных пространственных сцен. Воплощает многие законы оптики. Просто реализуются разнообразные проекции;

● даже усеченные варианты данного метода позволяют получить достаточно реалистичные изображения. Например, если ограничиться только первичными лучами (из точки проецирования), то это дает удаление невидимых точек. Трассировка уже одного-двух вторичных лучей дает тени, зеркальность, прозрачность;

● все преобразования координат (если таковые есть) линейны, поэтому достаточно просто работать с текстурами;

● для одного пиксела растрового изображения можно трассировать несколько близко расположенных лучей, а потом усреднять их цвет для устранения эффекта ступенчатости;

● поскольку расчет отдельной точки изображения выполняется независимо от других точек, то это может быть эффективно использовано при реализации данного метода в параллельных вычислительных системах, в которых лучи могут трассироваться одновременно.

Недостатки метода обратной трассировки:

● проблемы с моделированием диффузного отражения и преломления;

● для каждой точки изображения необходимо выполнять много вычислительных операций. Трассировка лучей относится к числу самых медленных алгоритмов синтеза изображений.