ЛЕКЦИЯ № 2.

Рисунок 11. Спиральная модель

Рисунок 10. Классический жизненный цикл ИС

Итерационная модель. Построение комплексных ИС подразумевает согласование проектных решений, получаемых при реализации отдельных задач. Подход к проектированию "снизу вверх" предполагает необходимость таких итерационных возвратов, когда проектные решения по отдельным задачам объединяются в общие системные решения, и при этом возникает потребность в пересмотре ранее сформулированных требований. Вследствие большого числа итераций возникают рассогласования и несоответствия в выполненных проектных решениях и документации.

Спиральная модель ─ классический пример применения эволюционной стратегии конструирования.

Где, 1. начальный сбор требований и планирование проекта; 2. та же работа, но на основе рекомендаций заказчика; 3. анализ риска на основе начальных требований; 4. анализ риска на основе реакции заказчика; 5. переход к комплексной системе; 6. начальный макет системы; 7. следующий уровень макета; 8. сконструированная система; 9. оценивание заказчиком.

Как показано на рис. 11, спиральная модель определяет четыре действия, представляемые четырьмя квадрантами спирали:

· планирование ─ определение целей, вариантов и ограничений;

· анализ риска ─ анализ вариантов и распознавание (выбор) риска;

· конструирование ─ разработка продукта следующего уровня;

· оценивание ─ оценка заказчиком текущих результатов конструирования.

Интегрирующий аспект спиральной модели очевиден при учете радиального измерения спирали. С каждой итерацией по спирали (продвижением от центра к периферии) строятся все более полные версии ПО.

Спиральная модель жизненного цикла ИС реально отображает разработку программного обеспечения; позволяет явно учитывать риск на каждом витке эволюции разработки; включает шаг системного подхода в итерационную структуру разработки; использует моделирование для уменьшения риска и совершенствования программного изделия.

Недостатками спиральной модели являются:

· новизна (отсутствует достаточная статистика эффективности модели);

· повышенные требования к заказчику;

· трудности контроля и управления временем разработки.

В основе спиральной модели жизненного цикла лежит применение прототипной технологии или RAD-технологии (rapid application development ─ технологии быстрой разработки приложений). Основная идея этой технологии заключается в том, что ИС разрабатывается путем расширения программных прототипов, повторяя путь от детализации требований к детализации программного кода. При прототипной технологии сокращается число итераций, возникает меньше ошибок и несоответствий, которые необходимо исправлять на последующих итерациях, а само проектирование ИС осуществляется более быстрыми темпами, упрощается создание проектной документации. Для более точного соответствия проектной документации разработанной ИС все большее значение придается ведению общесистемного репозитария и использованию CASE-технологий.

RAD-технология обеспечивает экстремально короткий цикл разработки ИС. При полностью определенных требованиях и ограниченной проектной области RAD-технология позволяет создать полностью функциональную систему за очень короткое время (60-90 дней). Выделяют следующие этапы разработки ИС с использованием RAD-технологии:

1. бизнес-моделирование. Моделируется информационный поток между бизнес-функциями. Определяются ответы на вопросы: Какая информация руководит бизнес-процессом? Какая информация генерируется? Кто генерирует ее? Где информация применяется? Кто обрабатывает информацию?

2. моделирование данных. Информационный поток отображается в набор объектов данных, которые требуются для поддержки деятельности организации. Определяются характеристики (свойства, атрибуты) каждого объекта, отношения между объектами;

3. моделирование обработки. Определяются преобразования объектов данных, обеспечивающие реализацию бизнес-функций. Создаются описания обработки для добавления, модификации, удаления или нахождения (исправления) объектов данных;

4. генерация приложения. Предполагается использование методов, ориентированных на языки программирования 4-го поколения. Вместо создания ПО с помощью языков программирования 3-го поколения, RAD-процесс работает с повторно используемыми программными компонентами или создает повторно используемые компоненты. Для обеспечения конструирования используются утилиты автоматизации (CASE-средства);

5. тестирование и объединение. Поскольку применяются повторно используемые компоненты, многие программные элементы уже протестированы, что сокращает время тестирования (хотя все новые элементы должны быть протестированы).

Применение RAD имеет и свои недостатки, и ограничения:

· большие проекты в RAD требуют существенных людских ресурсов (необходимо создать достаточное количество групп);

· RAD применима только для приложений, которые можно разделять на отдельные модули и в которых производительность не является критической величиной;

· RAD неприменима в условиях высоких технических рисков.