Классификация химических реакторов и режимов их работы.
КЛАССИФИКАЦИЯ ХИМИЧЕСКИХ РЕАКТОРОВ
=
Основу большинства химико-технологических процессов составляют реакторные процессы, в ходе которых сырье и реагенты превращаются в новые химические продукты.
Главными показателями, которые характеризуют процесс, являются скорость реакции и степень превращения сырья в готовый продукт.
Задача управления заключается в поддержании оптимальных значений этих показателей, обеспечивающих получение продукта заданного качества при максимальной производительности реактора и минимальных затратах.
Скорость реакции зависит от температуры и давления в реакторе, от концентрации реагирующих веществ и активности или концентрации катализатора. Следовательно, каждый из перечисленных факторов может быть использован в качестве управляющего воздействия на реакторный процесс.
Классификация химических реакторов и режимов их работы.
Химические реакторы для проведения различных процессов отличаются друг от друга по конструктивным признакам. Однако, несмотря на существующие различия, можно выделить общие признаки классификации реакторов, облегчающие систематизацию сведений о них, составление математического описания и выбор метода расчета.
Классификация химических реакторов и режимов их работы: 1) режим движения реакционной среды (гидродинамическая обстановка в реакторе); 2) условия теплообмена в реакторе; 3) фазовый состав реакционной смеси; 4) способ организации процесса; 5) характер изменения параметров процесса во времени; 6) конструктивные характеристики.
Классификация реакторов по гидродинамической обстановке. В зависимости от гидродинамической обстановки можно разделить все реакторы на реакторы смешения и вытеснения.
Реакторы смешения - это емкостные аппараты с перемешиванием механической мешалкой или циркуляционным насосом. Реакторы вытеснения - трубчатые аппараты, имеющие вид удлиненного канала. В трубчатых реакторах перемешивание имеет локальный характер и вызывается неравномерностью распределения скорости потока.
В теории химических реакторов обычно сначала рассматривают два идеальных аппарата - реактор идеального или полного смешения и реактор идеального или полного вытеснения.
Для модели идеального смешения принимается ряд допущений. Допускается, что в результате интенсивного перемешивания устанавливаются абсолютно одинаковые условия в любой точке реактора: концентрации реагентов и продуктов, степени превращения реагентов, температура, скорость химической реакции и т.д.
Реактор идеального вытеснения представляет собой длинный канал, через который реакционная смесь движется в поршневом режиме. Идеальное вытеснение возможно при выполнении следующих допущений: 1) движущий поток имеет плоский профиль линейных скоростей; 2) отсутствует обусловленное любыми причинами перемешивание в направлении оси потока.
Реальные реакторы в большей или меньшей степени приближаются к модели идеального вытеснения или идеального смещения. Внесение определенных поправок на неидеальность позволяет использовать модели идеальных аппаратов в качестве исходных для описания реальных реакторов.
Классификация по условиям теплообмена. Протекающие в реакторах химические реакции сопровождаются тепловыми эффектами (это тепловые эффекты химических реакций и сопровождающих их физических явлений, таких, например, как процессы растворения, кристаллизации, испарения и т.п.). Вследствие выделения или поглощения теплоты изменяется температура и возникает разность температур между реактором и окружающей средой, а в определенных случаях температурный градиент внутри реактора. Разность температур DТ является движущей силой теплообмена.
При отсутствии теплообмена с окружающей средой химический реактор является адиабатическим. В нем вся теплота, выделяющаяся или поглощающаяся в результате химических процессов, расходуется на «внутренний» теплообмен и на нагрев или охлаждение реакционной смеси.
Изотермические реакторы. Для сохранения постоянной температуры процесса в реакторах этого типа необходимо подводить или отводить тепло в соответствии с тепловым эффектом реакции. Однако, изотермические реакторы сравнительно редко используются в крупномасштабных производствах; высокая стоимость оборудования или теплообмена делает процесс неэкономичным. Поэтому промышленные реакторы чаще проектируются как адиабатическими или политропическими.
Политропические реакторы. В этих аппаратах предусмотрен подвод или отвод тепла.
В реакторах с промежуточным тепловым режимом тепловой эффект химической реакции частично компенсируется за счет теплообмена с окружающей средой, а частично вызывает изменение температуры реакционной смеси.
Особо следует выделить автотермические реакторы, в которых поддержание необходимой температуры процесса осуществляется только за счет теплоты химического процесса без использования внешних источников энергии. Обычно стремятся к тому, чтобы химические реакторы, особенно применяемые в крупнотоннажных производствах, были автотермическими.
Классификация по фазовому составу реакционной смеси. Реакторы для проведения гомогенных процессов подразделяют на аппараты для газофазных и жидкофазных реакций. Аппараты для проведения гетерогенных процессов, в свою очередь, подразделяют на газожидкостные реакторы, реакторы для процессов в системах газ - твердое вещество, жидкость твердое вещество и др. Особо следует выделить реакторы для проведения гетерогенно-каталитических процессов.
Классификация по способу организации процесса. По способу организации процесса (способу подвода реагентов и отвода продуктов) реакторы подразделяют на периодические, непрерывно-действующие и полунепрерывные (полупериодические).
В реакторе периодического действия все отдельные стадии протекают последовательно, в разное время. Все реагенты вводят в аппарат до начала реакции, а смесь продуктов отводят после окончания процесса. Продолжительность реакции можно измерить непосредственно, так как время реакции и время пребывания реагентов в реакционном объеме одинаковы. Параметры технологического процесса в периодически действующем реакторе изменяются во времени.
Между отдельными реакционными циклами в периодическом реакторе необходимо осуществить вспомогательные операции - загрузку реагентов и выгрузку продуктов. Поскольку во время этих вспомогательных операций не может быть получено дополнительное количество продукта, их наличие обусловливает снижение производительности периодического реактора.
В реакторе непрерывного действия (проточном) все отдельные стадии процесса химического превращения вещества и подача реагирующих веществ, химическая реакция, вывод готового продукта) осуществляются одновременно и, следовательно, непроизводительные затраты времени на операции загрузки и выгрузки отсутствуют. Поэтому на современных крупнотоннажных химических производствах, где требуется высокая производительность реакционного оборудования, большинство химических реакций осуществляют в непрерывно действующих реакторах.
Время пребывания отдельных частиц потока в непрерывно-действующем реакторе, в общем случае, случайная величина. Так как от времени, в течение которого происходит реакция, зависит глубина химического превращения, то она будет разной для частиц с разным временем пребывания в реакторе. Средняя глубина превращения определяется видом функции распределения времени пребывания отдельных частиц, зависящим, в свою очередь, от характера перемешивания, структуры потоков в аппарате и для каждого гидродинамического типа реактора индивидуальным.
Реактор полунепрерывного (полупериодического) действия характеризуется тем, что один из реагентов поступает в него непрерывно, а другой - периодически. Возможны варианты, когда реагенты поступают в реактор периодически, а продукты реакции выводятся непрерывно, или наоборот.
Классификация по характеру изменения параметров процесса во времени. В зависимости от характера изменения параметров процесса во времени одни и те же реакторы могут работать в стационарном и нестационарном режимах.
Рассмотрим некоторую произвольную точку, находящуюся внутри химического реактора. Режим работы реактора называют стационарным, если протекание химической реакции в произвольно выбранной точке характеризуется одинаковыми значениями концентраций реагентов или продуктов, температуры, скорости и других параметров процесса в любой момент времени. В стационарном режиме параметры потока на выходе из реактора не зависят от времени. Обычно это постоянство выходных параметров обеспечивается постоянством во времени параметров на входе в реактор.
Если в произвольно выбранной точке происходят изменения параметров химического процесса во времени по тому или иному закону, режим работы реактора называют нестационарным. Нестационарный режим является более общим. Стационарный режим возможен для непрерывно-действующих проточных реакторов. Но даже эти реакторы работают в нестационарном режиме в моменты их пуска и остановки. Нестационарными являются все периодические процессы.
Стационарные проточные реакторы (описываются более простыми уравнениями); протекающие в них процессы легче автоматизировать.
Нестационарность процесса в реакторе, естественно, вносит определенные усложнения и в описание реактора, и в управление его работой, однако во многих случаях нестационарные режимы технологических процессов, протекающих в химических реакторах, легче приблизить к оптимальным.
Классификация по конструктивным характеристикам. Химические реакторы отличаются друг от друга и по ряду конструктивных характеристик, оказывающих влияние на расчет и изготовление аппаратов. По этому принципу классификации можно выделить такие типы реакторов: емкостные реакторы (автоклавы; реакторы-камеры; вертикальные и горизонтальные цилиндрические конверторы и т.п.). Колонные реакторы (реакторы-колонны насадочного и тарельчатого типа; каталитические реакторы с неподвижным, движущимся и псевдоожиженным слоем катализатора; полочные реакторы); реакторы типа теплообменника; реакторы типа реакционной печи (шахтные, полочные, камерные, вращающиеся печи и т.п.).