Обращение как преобразование простого суждения
ЛОГИЧЕСКИЕ ОПЕРАЦИИ С ПРОСТЫМИ СУЖДЕНИЯМИ
Логическая операция преобразования простого суждения предполагает изменение его формы, или структуры, но не содержания В результате преобразования простого суждения его содержание должно оставаться неизменным. Распределенность терминов в исходном суждении и в новом суждении должна оставаться одной и той же. Существует три способа преобразования простых суждений: обращение, превращение и противопоставление предикату.
Обращение (также часто называемое конверсией) – это преобразование простого суждения, при котором его субъект и предикат меняются местами. Например, суждение: Все акулы являются рыбами преобразуются путем обращения в суждение: Некоторые рыбы являются акулами. Здесь может возникнуть вопрос, почему исходное суждение начинается с квантора все, а новое – с квантора некоторые? Этот вопрос на первый взгляд кажется странным, ведь нельзя сказать: Все рыбы являются акулами, следовательно, единственное, что остается, это: Некоторые рыбы являются акулами. Однако в данном случае мы обратились к содержанию суждения и по смыслу поменяли квантор все на квантор некоторые; а логика, как уже говорилось, отвлекается от содержания мышления и занимается только его формой, будучи формальной логикой. Поэтому обращение суждения: Все акулы являются рыбами можно выполнить формально, не обращаясь к его содержанию (смыслу). Для этого установим распределенность терминов в данном суждении с помощью круговой схемы. Термины суждения, т.е. субъект (акулы) и предикат (рыбы) находятся в отношении подчинения.
На схеме видно, что субъект распределен (полный круг), а предикат нераспределен (неполный круг). Вспомнив, что термин распределен, когда речь идет обо всех предметах, входящих в него, и нераспределен, когда – не обо всех предметах, мы автоматически мысленно ставим перед термином акулы квантор все, а перед термином рыбы квантор некоторые. Делая обращение указанного суждения, т.е. меняя местами его субъект и предикат и начиная новое суждение с термина рыбы, мы опять же автоматически снабжаем его квантором некоторые, не задумываясь о содержании исходного и нового суждений, и получаем безошибочный вариант: Некоторые рыбы являются акулами.
Обратим внимание на то, что в рассмотренном выше примере исходное суждение было вида А, а новое – вида I, т.е. операция обращения привела к смене вида простого суждения. При этом, конечно же, поменялась его форма, но не поменялось содержание, ведь в суждениях: Все акулы являются рыбами и Некоторые рыбы являются акулами речь идет об одном и том же.
Рассмотрим все случаи обращения в зависимости от вида простого суждения и характера отношений между его субъектом и предикатом.
1. Суждение вида А, в котором субъект и предикат находятся в отношении равнозначности: обращается в суждение вида А: Все квадраты (S) ‑ это равносторонние прямоугольники (P) ® Все равносторонние прямоугольники ‑ это квадраты.
2. Суждение вида А, в котором субъект и предикат находятся в отношении подчинения, обращается в суждение вида I: Все сосны (S) являются деревьями (Р) ® Некоторые деревья являются соснами.
3. Суждение вида I, в котором субъект и предикат находятся в отношении пересечения, обращается в суждение вида I: Некоторые школьники (S) ‑ это спортсмены (Р) ® Некоторые спортсмены – это школьники.
4. Суждение вида I, в котором субъект и предикат находятся в отношении подчинения, обращается в суждение вида А: Некоторые книги (S) являются учебниками (Р) ® Все учебники являются книгами.
5. Суждение вида Е, в котором субъект и предикат находятся только в отношении несовместимости, всегда обращается в суждение вида Е: Все планеты (S) не являются звездами (Р) ® Все звезды не являются планетами.
6. Если попытаться подвергнуть обращению суждение вида О, то вместе с изменением его формы изменится и его содержание, которое, как мы помним, меняться не должно; т.е. суждения вида О не поддаются обращению: Некоторые школьники (S) не являются спортсменами (Р) ® Все спортсмены не являются школьниками. В данном случае новое суждение имеет квантор «все», потому что предикат исходного суждения представляет собой распределенный термин.
Приведем еще один пример, иллюстрирующий невозможность преобразования суждений вида О путем обращения: Некоторые книги (S) не являются учебниками (Р) ® Все учебники не являются книгами.