Определение

Числовой ряд

Пример

Раскрытие неопределённостей

Следствия

1.

2.

3.

4.

5. для ,

6.

Доказательства следствий

1.

2.

3.

4.

5.

6.


 

Раскрытие неопределённостей — методы вычисления пределов функций, заданных формулами, которые в результате формальной подстановки в них предельных значений аргумента теряют смысл, то есть переходят в выражения типа:

             

по которым невозможно судить о том, существуют или нет искомые пределы, не говоря уже о нахождении их значений, если они существуют.

Самым мощным методом является правило Лопиталя, однако и оно не во всех случаях позволяет вычислить предел. К тому же напрямую оно применимо только ко второму и третьему из перечисленных видов неопределённостей, то есть отношениям, и чтобы раскрыть другие типы, их надо сначала привести к одному из этих.

Также для вычисления пределов часто используется разложение выражений, входящих в исследуемую неопределённость, в ряд Тейлора в окрестности предельной точки.

Для раскрытия неопределённостей видов , , пользуются следующим приёмом: находят предел (натурального) логарифма выражения, содержащего данную неопределённость. В результате вид неопределённости меняется. После нахождения предела от него берут экспоненту.

 

 

 

Для раскрытия неопределённостей типа используется следующий алгоритм:

1. Выявление старшей степени переменной;

2. Деление на эту переменную как числителя, так и знаменателя.

Для раскрытия неопределённостей типа существует следующий алгоритм:

1. Разложение на множители числителя и знаменателя;

2. Сокращение дроби.

Для раскрытия неопределённостей типа иногда удобно применить следующее преобразование:

Пусть и

 

· «Замечательный предел» — пример неопределённости вида 0 / 0. По правилу Лопиталя

 


 

Числовой ряд — это числовая последовательность, рассматриваемая вместе с другой последовательностью, которая называется последовательностью частичных сумм (ряда).

Рассматриваются числовые ряды двух видов

· вещественные числовые ряды — изучаются в математическом анализе;

· комплексные числовые ряды — изучаются в комплексном анализе;

Важнейший вопрос исследования числовых рядов — это сходимость числовых рядов.

Числовые ряды применяются в качестве системы приближений к числам.

Содержание · 1 Определение · 2 Операции над рядами · 3 Критерий абсолютной сходимости

Пусть — числовая последовательность; рассмотрим наравне с данной последовательностью последовательность

 

каждый элемент которой представляет собой сумму некоторых членов исходной последовательности. В наиболее простом случае используются обычные частичные суммы вида

 

Вообще, для обозначения ряда используется символ

 

поскольку здесь указана исходная последовательность элементов ряда, а также правило суммирования.

В соответствии с этим говорится о сходимости числового ряда:

· числовой ряд сходится, если сходится последовательность его частичных сумм;

· числовой ряд расходится, если расходится последовательность его частичных сумм.

Если числовой ряд сходится, то предел S последовательности его частичных сумм носит название суммы ряда: