Единичная и единичная транспонированная матрицы четырёхразрядного двоичного кода
Принципы построения циклических кодов.
Определенные комбинации циклического кода можно значительно упростить, если применить способ записи натурального двоичного кода с помощью единичной транспонированной матрицы.
Таблица 4.19
Определяющей матрицей натурального двоичного k – разрядного кода является квадратная единичная матрица Ik или единичная транспонированная матрица IkT, имеющая k – столбцов и k – строк. Разница между этими матрицами в том, какая из главных диагоналей имеет все элементы, равные 1 (табл. 4.19).
Из матрицы Ik или IkT путем сложения нескольких строк по модулю 2 в различных сочетаниях можно получить все ненулевые комбинации кода.
При использовании этого способа записи достаточно многочлены, образуемые строками IkT, умножить на xn-k, разделить на P(x) и остаток приписать в виде дополнительной матрицы C(n-k), k контрольных элементов. Тогда определяющую матрицу C* циклического (n, k) кода можно записать в следующем виде:
. (4.10)