Адрес ячейки памяти

АЛУ

Общая структурная схема процессора

Принцип фон Неймана

Лекция 3

Принцип фон Неймана. АЛУ. Программа как последовательность кодов команд. Адрес ячейки памяти. Регистры процессора. Как процессор складывает два числа.

 

Большинство современных ЭВМ строится на базе принципов, сформулированных американским ученым, одним из отцов кибернетики Джоном фон Нейманом. Впервые эти принципы были опубликованы фон Нейманом в 1945 г. в его предложениях по машине EDVAC. Эта ЭВМ была одной из первых машин с хранимой программой, т.е. с программой, запомненной в памяти машины, а не считываемой с перфокарты или другого подобного устройства. В целом эти принципы сводятся к следующему:

1) Основными блоками фон-неймановской машины являются блок управления, арифметико-логическое устройство, память и устройство ввода-вывода.

2) Информация кодируется в двоичной форме и разделяется на единицы, называемые словами.

3) Алгоритм представляется в форме последовательности управляющих слов, которые определяют смысл операции. Эти управляющие слова называются командами. Совокупность команд, представляющая алгоритм, называется программой.

4) Программы и данные хранятся в одной и той же памяти. Разнотипные слова различаются по способу использования, но не по способу кодирования.

5) Устройство управления и арифметическое устройство обычно объединяются в одно, называемое центральным процессором. Они определяют действия, подлежащие выполнению, путем считывания команд из оперативной памяти. Обработка информации, предписанная алгоритмом, сводится к последовательному выполнению команд в порядке, однозначно определяемом программой.

Компьютеры, построенные на этих принципах, называются машинами фон‑Неймановского типа.

Процессор - центральная микросхема ЭВМ, осуществляющая операции по обработке информации и управляющая работой остальных устройств ЭВМ.

Процессор представляет собой микросхему с большим числом контактов, имеющую прямоугольную или квадратную форму и легко помещающуюся на ладони.

Изобретателем микропроцессора как схемы, в которую собрана практически вся основная электроника компьютера, стала американская фирма INTEL, выпустившая в 1970 году процессор 8008. С их появления и началась история ЭВМ четвертого поколения.

В своей работе процессор использует регистры - ячейки памяти, находящиеся внутри процессора. На рисунке приведена общая схема процессора.

Общая структурная схема процессора

 

Процессор разделен на две части:

операционное устройство (ОУ) и шинный интерфейс (ШИ).

Назначение ОУ - выполнение команд, а ШИ подготавливает команды и данные для выполнения. ОУ содержит:

арифметико-логическое устройство (АЛУ) - "отвечает" за выполнение команд,

устройство управления (УУ) - осуществляет выборку команд из памяти, пересылку их на АЛУ и перемещение полученных результатов в требуемую ячейку памяти;

10 регистров - применяются при вычислениях.

Эти устройства обеспечивают выполнение команд, арифметические вычисления и логические операции.

Три элемента ШИ - блок управления шиной, очередь команд и сегментные регистры - осуществляют следующие функции:

передачу данных на ОУ, в память и на внешние устройства ввода/вывода;

адресацию памяти с помощью четырех сегментных регистров;

выборку команд, требуемых для выполнения, из памяти в очередь команд.

Компьютер имеет два типа внутренней памяти. Постоянная память (ПЗУ или ROM - read-only memory). Она представляет собой специальную микросхему, из которой возможно только чтение, так как данные в ней специальным образом "прожигаются" и не могут быть модифицированы. Ее основное назначение: поддержка процедур начальной загрузки, выполнение различных проверок и т.д. Для целей программирования наиболее важным элементом ПЗУ является BIOS (Basic Input/Output System) - базовая система ввода/вывода.

Память, с которой имеет дело программист, называется ОЗУ (RAM - random access memory) - оперативное запоминающее устройство. Ее содержимое доступно как для чтения, так и для записи. Здесь хранятся программы и данные во время работы компьютера.

Основным устройством обработки информации в ЭВМ является арифметико-логическое устройство (АЛУ). Его основой является электронная схема, составленная из большого числа транзисторов, называемая сумматором. Сумматором выполняются простейшие логические и арифметические операции над данными, представленными в виде двоичных кодов (нулей и единиц). К логическим операциям относятся логическое умножение (операция "И"), логическое сложение (операция "ИЛИ") и логическое отрицание (операция "НЕ"). Результатом операции логического умножения является 1, если все переменные, являющиеся исходными данными равны 1, и 0, если хотя бы одна из них равна 0. Вспоминая, что 1 моделируется электрическим сигналом, а 0 - отсутствием сигнала, можно сказать, что на выходе устройства будет электрический сигнал тогда и только тогда, когда сигнал будет иметься на каждом входе:

Результатом операции логического сложения является 0, если все исходные переменные равны нулю, и 1, если хотя бы одна из них равна 1. Результатом операции логического отрицания является 1, если на входе- 0, и 0, если на входе -1.

На основе этих трех операций можно производить арифметические действия над числами, представленными в виде нулей и единиц. Теоретической основой для этого являются законы, разработанные еще в 1847 году ирландским математиком Джорджем Булем, известные как Булева алгебра, в которой используются только два числа- 0 и 1. Ранее считалось, что эти работы Буля никому не нужны, и их автор подвергался насмешкам. Однако, в 1938 году американский инженер Клод Шеннон положил Булеву алгебру в основу теории электрических и электронных переключательных схем- сумматоров, создание которых и привело к появлению ЭВМ, способных автоматически производить арифметические вычисления.

Все остальные операции, производимые ЭВМ, сводятся к большому числу простейших арифметических и логических операций, аналогично тому, как операцию умножения можно свести к большому числу операций сложения.

В современных ЭВМ арифметико-логическое устройство объединяется с управляющими устройствами в единую схему - процессор.

В компьютерных системах работа с памятью основывается на очень простых концепциях. В принципе, все, что требуется от компьютерной памяти, - это сохранять один бит информации так, чтобы потом он мог быть извлечен оттуда.

Одним из основных элементов компьютера, позволяющим ему нормально функционировать, является память. Внутренняя память компьютера - это место хранения информации, с которой он работает. Внутренняя память компьютера является временным рабочим пространством; в отличие от нее внешняя память, такая как файл на дискете, предназначена для долговременного хранения информации. Информация во внутренней памяти не сохраняется при выключении питания.

Каждая ячейка памяти имеет адрес, который используется для ее нахождения. Адреса - это числа, начиная с нуля для первой ячейки, увеличивающиеся по направлению к последней ячейке памяти. Поскольку адреса - это те же числа, компьютер может использовать арифметические операции для вычисления адресов памяти.

Архитектура каждого компьютера накладывает собственные ограничения на величину адресов. Наибольший возможный адрес определяет объем адресного пространства компьютера или то, какой объем памяти он может использовать. Обычно компьютер использует память меньшего объема, чем допускается его возможностями адресации. Если архитектура компьютера предусматривает наибольшее адресное пространство, это накладывает суровые ограничения на возможности такого компьютера. Адреса в 8088 имеют длину 20 бит, следовательно, процессор позволяет адресовать два в двадцатой степени байта или 1024 К.