Остальные средства измерений подлежат обязательной ведомственной поверке.

Воспроизводимость - это качество измерений, отражающее близость друг к другу результатов измерений, выполняемых в различных условиях (в различное время, в различных местах, различными методами и средствами).

Сходимость - это качество измерений, отражающее близость друг к другу результатов измерений одного и того же параметра, выполненных повторно одними и теми же средствами одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Метрологическими показателями и характеристиками измерительных приборов и установок являются: диапазон показаний, диапазон измерений, цена деления шкалы, длина деления шкалы, чувствительность и вариация и др.

Таблица 1.4. Образование дольных и кратных единиц и их наименований

Таблица 1.3. Внесистемные единицы, допускаемые к применению наравне с единицами СИ

Таблица 1.2. Производные единицы системы СИ, имеющие специальное название.

Таблица 1.1. Основные и дополнительные единицы системы СИ.

Согласованная Международная система единиц физических величин была принята в 1960 г. XI Генеральной конференцией по мерам весам. Международная система - СИ (SI), SI - начальные буквы французского наименования Systeme International.

Шкала физической величины — это упорядоченная последовательность значений ФВ, принятая по соглашению на основании результатов точных измерений. Термины и определения теории шкал измерений изложены в документе МИ 2365-96.

 

В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений.

1. Шкалы наименований (шкалы классификации). Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности. Эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен.

Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

2. Шкалы порядка (шкалы рангов). Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка. Она является монотонно возрастающей или убывающей и позволяет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить, во сколько раз больше или меньше конкретные проявления свойства.

Условная шкала — это шкала порядка ФВ, исходные значения которой выражены в условных единицах. Например, шкала вязкости Энглера, 12-балльная шкала Бофорта для измерения силы морского ветра.

Широкое распространение получили шкалы порядка с нанесенными на них реперными точками. К таким шкалам, например, относится шкала Мооса для определения твердости минералов, которая содержит 10 опорных (реперных) минералов с различными условными числами твердости: тальк — 1; гипс — 2; кальций — 3; флюорит — 4; апатит —■ 5; ортоклаз — 6; кварц — 7; топаз — 8; корунд — 9; алмаз — 10. Отнесение минерала к той или иной градации твердости осуществляется на основании эксперимента, который состоит в том, что испытуемый материал царапается опорным. Если после царапанья испытуемого минерала кварцем G) на нем остается след, а после ортоклаза F) — не остается, то твердость Испытуемого материала составляет более 6, но менее 7. Более точного ответа в этом случае дать невозможно.

Определение значения величин при помощи шкал порядка нельзя считать измерением, так как на этих шкалах не могут быть введены единицы измерения. Операцию по приписыванию числа требуемой величине следует считать оцениванием. Оценивание по шкалам порядка является неоднозначным и весьма условным.

3. Шкалы интервалов (шкалы разностей). Эти шкалы являются дальнейшим развитием шкал порядка и применяются для объектов, свойства которых удовлетворяют отношениям эквивалентности, порядка и аддитивности. Шкала интервалов состоит из одинаковых интервалов, имеет единицу измерения и произвольно выбранное начало — нулевую точку. К таким шкалам относится летосчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо Рождество Христово и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

На шкале интервалов определены действия сложения и вычитания интервалов. Действительно, по шкале времени интервалы можно суммировать или вычитать и сравнивать, во сколько раз один интервал больше другого, но складывать даты каких-либо событий бессмысленно.

4. Шкалы отношений. Эти шкалы описывают свойства эмпирических объектов, которые удовлетворяют отношениям эквивалентности, порядка и аддитивности (шкалы второго рода — аддитивные), а в ряде случаев и пропорциональности (шкалы первого рода — пропорциональные). Их примерами являются шкалы массы (второго рода) и термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и единица измерений. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все арифметические действия, что имеет важное значение при измерении ФВ. Шкалы отношений — самые совершенные. Они описываются уравнением Q=q[Q], где Q — ФВ, для которой строится шкала; [Q] — ее единица измерения; q — числовое значение ФВ. Переход от одной шкалы отношений к другой происходит в соответствии с уравнением q2 = ql [Q1]/ [Q2].

5. Абсолютные шкалы. Под абсолютными понимают шкалы, обладающие всеми признаками шкал отношений, но дополнительно имеющие естественное однозначное определение единицы измерения и не зависящие от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: коэффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Пример для практического занятия.

Шкала интервалов величины Q можно представить в виде Q =Q0 + q[Q], где q — числовое значение величины; Q0 — начало отсчета шкалы; [Q] — единица рассматриваемой величины. Такая шкала полностью определяется заданием начала отсчета Q0 шкалы и единицы данной величины [Q]. Задать шкалу можно двумя путями. При первом пути выбираются два значения Q0 и Ql величины, которые относительно просто реализованы физически. Эти значения называются опорными точками, или основными реперами, а интервал (Q1 — Q0) — основным интервалом. Точка Q0 принимается за начало отсчета, а величина (Q1 — Q0)/n = [Q] за единицу Q. При этом число единиц n выбирается таким, чтобы [Q] было целой величиной. Перевод одной шкалы интервалов Q = Q0l + ql[Q]l в другую Q=Q02 + q2[Q]2 осуществляется по формуле

(1.1)

При втором пути единица воспроизводится непосредственно как интервал, его некоторая доля или некоторое число интервалов размеров данной величины, а начало отсчета выбирается каждый раз по-разному в зависимости от конкретных условий изучаемого явления. Пример такого подхода — шкала времени, в которой 1 с = 9 192 631 770 периодов излучения, соответствующих переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133. За начало отсчета принимается начало изучаемого явления.

Шкала Фаренгейта является шкалой интервалов. На ней Q0 — температура смеси льда, поваренной соли и нашатыря, Q1 — температура человеческого тела. Единица измерения — градус Фаренгейта: . Температура таяния смеси льда, соли и нашатыря оказалась равной 32°F, а температура кипения воды — 212°F. По шкале Цельсия Q0 — температура таяния льда, Q1 — температура кипения воды. Градус Цельсия .

Требуется получить формулу для перехода от одной шкалы к другой.

Решение. Формула для перехода определяется в соответствии с выражением (1.1). Значение разности температур по шкале Фаренгейта между точкой кипения воды и точкой таяния льда составляет 212°F - 32°F = 180°F. По шкале Цельсия интервал температур равен 100°С. Следовательно, 100°С = 180°F и отношение размеров единиц

Числовое значение интервала между началами отсчета по рассматриваемым шкалам, измеренного в градусах Фаренгейта ([Q]l = F), равно 32. Переход от температуры по шкале Фаренгейта к температуре по шкале Цельсия производится по формуле

 

 

Лекция 2.

Системы физических величин и их единиц, система СИ

Размер физической величины — это количественное содержание в данном объекте свойства, соответствующего понятию "физическая величина". Например, каждое тело обладает определенной массой, вследствие чего тела можно различать по их массе, т.е. по размеру интересующей нас ФВ.

Значение физической величины получают в результате ее измерения или вычисления в соответствии с основным уравнением измерения Q=q[Q], связывающим между собой значение ФВ Q, числовое значение q и выбранную для измерения единицу [Q]. В зависимости от размера единицы будет меняться числовое значение ФВ, тогда как размер ее будет оставаться неизменным.

Размерность единиц ФВ - dim Q — выражение в форме степенного многочлена, отражающее связь данной величины с основными ФВ. Коэффициент пропорциональности принят равным единице:

dim Q = LαMβTγIδ..,

где L, М, Т, I— условные обозначения основных величин данной системы; α, β, γ, δ — целые или дробные, положительные или отрицательные вещественные числа. Показатель степени, в которую возведена размерность основной величины, называют показателем размерности. Если все показатели размерности равны нулю, то такую величину называют безразмерной.

Над размерностями можно производить действия умножения, деления, возведения в степень и извлечение корня. Понятие размерности широко используется:

• для перевода единиц из одной системы в другую;

• для проверки правильности сложных расчетных формул, полученных в результате теоретического вывода;

• при выяснении зависимости между величинами;

• в теории физического подобия.

 

Уравнения связи между величинами — уравнения, отражающие законы природы, в которых под буквенными символами понимаются ФВ. Они могут быть записаны в виде, не зависящем от набора единиц измерений входящих в них ФВ:

Q=KX'YbZ'...

Коэффициент К не зависит от выбора единиц измерений, он определяет связь между величинами. Например, площадь треугольника S равна половине произведения основания L на высоту h:

S= 0.5 Lh.

Коэффициент К=0,5 появился в связи с выбором не единиц измерений, а формы самих фигур.

Уравнения связи между числовыми значениями физических величин — уравнения, в которых под буквенными символами понимают числовые значения величин, соответствующие выбранным единицам. Вид этих уравнений зависит от выбранных единиц измерения. Они могут быть записаны в виде:

Q = KeKXαYβZg...,

где Ке — числовой коэффициент, зависящий от выбранной системы единиц. Например, уравнение связи между числовыми значениями площади треугольника и его геометрическими размерами имеет вид при условии, что площадь измеряется в квадратных метрах, а основание и высота соответственно в метрах и миллиметрах:

S = 0,5 Lh, т. е. Ке = 1,

или

S= 0,5∙10-6 Lh, т.е. Ке= 10-6 м2/мм2.

Совокупность ФВ, образованная в соответствии с принятыми принципами, когда одни величины принимаются за независимые, а другие являются их функциями, называется системой физических величин.

Обоснованно, но произвольным образом выбираются несколько ФВ, называемых основными. Остальные величины, называемые производными, выражаются через основные на основе известных уравнений связи между ними. Примерами производных величин могут служить: плотность вещества, определяемая как масса вещества, заключенного в единице объема; ускорение — изменение скорости за единицу времени и др.

 

В Российской Федерации система СИ введена ГОСТ 8.417—81.

 

В названии системы ФВ применяют символы величин, принятых за основные. Например, система величин механики, в которой в качестве основных используются длина (L), масса (М) и время (T), называется системой LMT. Действующая в настоящее время международная система СИ должна обозначаться символами LMTIQNJ, соответствующими символам основных величин: длине (L), массе (М), времени (Т), силе электрического тока (I), температуре (Q), количеству вещества (N) и силе света (J) (таблица 1.1).

· Метр равен длине пути, проходимого светом в вакууме за 1/299.792.458 долю секунды.

· Килограмм равен массе международного прототипа килограмма.

· Секунда равна 9.192.631.770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.

· Ампер равен силе не изменяющегося во времени электрического тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызывает на каждом участке проводника длиной 1 м силу взаимодействия, равную 2•10 в минус 7-ой степени Н.

· Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.

· Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0.012 кг.

· Кандела равна силе света в заданном направлении источника, испускающего монохроматическое излучение частотой 540•10 в 12-ой степени Гц, энергетическая сила света которого в этом направлении составляет 1/683 Вт/ср.

 

Производные единицы системы СИ, имеющие собственное название, приведены в табл. 1.2.

Величина Единица
  Наименование   Размерность Рекомендуемое обозначение   Наименование Обозначение
русское междуна- родное
Основные
Длина L l метр м m
Масса M m килограмм кг kg
Время T t секунда с s
Сила электри- ческого тока I I ампер А A
Теромодина- мическая температура Q T кельвин К K
Количество вещества N n, v моль моль mol
Сила света J J канделла кд cd
Дополнительные
Плоский угол - - радиан рад rad
Телесный угол - - стерадиан ср sr

 

Величина Единица
Наименование Размер-ность Наимено-вание Обозна-чение Выражение через единицы Си
Частота Т-1 герц Гц с-1
Сила, вес LMT-2 ньютон Н м∙кг∙с-2
Давление, механическое напряжение L-1MT-2 паскаль Па м-1∙кг∙с-2
Энергия, работа, количество теплоты L2MT-2 джоуль Дж м2∙кг∙с-2
Мощность L2MT-3 ватт Вт м2∙кг∙с-3
Количество электричества TI кулон Кл с∙А
Электрический напряжение, потенциал, электродвижущая сила L2MT-3I-1 вольт В м2∙кг∙с-3∙А-1
Электрическая емкость L-2M-1T4I2 фарад Ф м-2∙кг-1∙с4∙А2
Электрическое сопротивление L2MT-3I-2 ом Ом м2∙кг∙с-3∙А-2
Электрическая проводимость L-2M-1T3I2 сименс См м-2∙кг-1∙с3∙А2
Поток магнитной индукции L2MT-2I-1 вебер Вб м2∙кг∙с-2∙А-1
Магнитная индукция MT-2I-1 тесла Тл кг∙с-2∙А-1
Индуктивность L2MT-2I-2 генри Гн м2∙кг∙с-2∙А-2
Световой поток J люмен лм кд∙ср
Освещенность L-2J люкс лк м-2∙кд∙ср
Активность радионуклида Т-1 беккерель Бк с-1
Поглощенная доза ионизирующего излучения L2T-2 грей Гр м2∙с-2
Эквивалентная доза излучения L2T-2 зиверт Зв м2∙с-2

Производные единицы бывают когерентными и некогерентными. Когерентной называется производная единица ФВ, связанная с другими единицами системы уравнением, в котором числовой множитель принят равным единице. Например, единицу скорости образуют с помощью уравнения, определяющего скорость прямолинейного и равномерного движения точки: v = L/t, где L — Длина пройденного пути; t — время движения. Подстановка вместо L и t их единиц в системе СИ дает v = 1 м/с. Следовательно, единица скорости является когерентной.

Единицы ФВ делятся на системные и внесистемные.

Системная единица — единица ФВ, входящая в одну из принятых систем. Все основные, производные, кратные и дольные единицы являются системными.

Внесистемная единица — это единица ФВ, не входящая ни в одну из принятых систем единиц. Внесистемные единицы по отношению к единицам СИ разделяют на четыре вида:

•-допускаемые наравне с единицами СИ, например: единицы массы — тонна; плоского угла — градус, минута, секунда; объема — литр и др. Внесистемные единицы, допускаемые к применению наравне с единицами СИ, приведены в табл. 1.3;

• допускаемые к применению в специальных областях, например: астрономическая единица, парсек, световой год — единицы длины в астрономии; диоптрия — единица оптической силы в оптике; электрон-вольт — единица энергии в физике и т.д.;

• временно допускаемые к применению наравне с единицами СИ, например: морская миля — в морской навигации; карат — единица массы в ювелирном деле и др. Эти единицы должны изыматься из употребления в соответствии с международными соглашениями;

• изъятые из употребления, например: миллиметр ртутного столба — единица давления; лошадиная сила — единица мощности и некоторые другие.

Наименование величины Единица
Наименование Обозна-чение Соотношение с единицей СИ
  масса тонна т 103 кг
атомная единица массы а. е. м. 1.66057∙10-27 кг (приблизительно)
  время минута мин 60 с
час ч 3600 с
сутки сут 86400 с
  плоский угол градус ° (π/180) рад=1.745329..∙10-2 рад
минута …′ (π/10800) рад=2.908882..∙10-4 рад
секунда …″ (π/648000) рад=4.848137..∙10-6 рад
град град (π/200) рад
объем литр л 10-3 м3
  длина астрономическая единица а. е. 1.45598∙1011 м (приблизительно)
световой год св. год 9.4605∙1015 м (приблизительно)
парсек пк 3.0857∙1016 м (приблизительно)
оптическая сила диоптрия дптр 1 м-1
площадь гектар га 104 м2
энергия электрон-вольт эВ 1.60219∙10-19 Дж (приблизительно)
полная мощность вольт-ампер В∙А -
реактивная мощность вар вар -

Различают кратные и дольные единицы ФВ.

Кратная единица— это единица ФВ, в целое число раз превышающая системную или внесистемную единицу. Например, единица длины - километр - равна 103 м, т.е. кратна метру.

Дольная единица — единица ФВ, значение которой в целое число раз меньше системной или внесистемной единицы. Например, единица длины - миллиметр равна 10-3 м, т.е. является дольной. Приставки для образования кратных и дольных единиц приведены в табл. 1.4.

В системе СИ впервые введено понятие дополнительных единиц, к которым отнесены единицы плоского и телесного углов — радиан и стерадиан.

  Множи-тель   При-ставка Обозначение приставки   Множи-тель   При-ставка Обозначение приставки
Между-народное Русское Между-народное Русское
1018 экса E Э 10-1 деци d д
1015 пета P П 10-2 санти c с
1012 тера T Т 10-3 мили m м
109 гига G Г 10-6 микро μ мк
106 мега M М 10-9 нано n н
103 кило k к 10-12 пико p п
102 гекто h г 10-15 фемто f ф
101 дека da да 10-18 атто a а

Лекция 3.

Виды и методы измерений. Средства измерений (начало).

Виды и методы измерений

Измерение — процесс, заключающийся в сравнении путем физического эксперимента данной ФВ с известной ФВ, принятой за единицу измерения.

Результатом процесса является значение физической величины Q = q[Q] , где q - числовое значение физической величины в принятых единицах; [Q] - единица физической величины. Значение физической величины Q, найденное при измерении, называют действительным.

Принцип измерений - физическое явление или совокупность физических явлений, положенных в основу измерений. Например, измерение массы тела при помощи взвешивания с использованием силы тяжести, пропорциональной массе, измерение температуры с использованием термоэлектрического эффекта.

Метод измерений - совокупность приемов использования принципов и средств измерений.

Средствами измерений (СИ) являются используемые технические средства, имеющие нормированные метрологические свойства.

 

По характеру зависимости измеряемой величины от времени измерения выделяют статические и динамические измерения.

Статические - это измерения, при которых измеряемая величина остается постоянной во времени. Такими измерениями являются, например, измерения размеров изделия, величины постоянного давления, температуры и др.

Динамические - это измерения, в процессе которых измеряемая величина изменяется во времени, например, измерение давления и температуры при сжатии газа в цилиндре двигателя.

 

По способу получения результатов, определяемому видом уравнения измерений, выделяют прямые, косвенные, совокупные и совместные измерения.

Прямые - это измерения, при которых искомое значение физической величины находят непосредственно из опытных данных.

Примерами таких измерений являются: измерение длины линейкой или рулеткой, измерение диаметра штангенциркулем или микрометром, измерение угла угломером, измерение температуры термометром и т.п.

Косвенные - это измерения, при которых значение величины определяют на основании известной зависимости между искомой величиной и величинами, значения которых находят прямыми измерениями.

Примеры косвенных измерений: определение объема тела по прямым измерениям его геометрических размеров, нахождение удельного электрического сопротивления проводника по его сопротивлению, длине и площади поперечного сечения.

Косвенные измерения широко распространены в тех случаях, когда искомую величину невозможно или слишком сложно измерить прямым измерением.

Встречаются случаи, когда величину можно измерить только косвенным путём, например размеры астрономического или внутриатомного порядка.

Совокупные - это такие измерения, при которых значения измеряемых величин определяют по результатам повторных измерений одной или нескольких одноименных величин при различных сочетаниях мер или этих величин. Значение искомой величины определяют решением системы уравнений, составляемых по результатам нескольких прямых измерений.

Примером совокупных измерений является определение массы отдельных гирь набора, т.е. проведение калибровки по известной массе одной из них и по результатам прямых измерений и сравнения масс различных сочетаний гирь.

Совместные - это измерения, производимые одновременно двух или нескольких разноименных величин для нахождения функциональной зависимости между ними.

Примерами совместных измерений являются определение длины стержня в зависимости от его температуры или зависимости электрического сопротивления проводника от давления и температуры.

 

По условиям, определяющим точность результата, измерения делятся на три класса.

1. Измерения максимально возможной точности, достижимой при существующем уровне техники. В этот класс включены все высокоточные измерения и в первую очередь эталонные измерения, связанные с максимально возможной точностью воспроизведения установленных единиц физических величин. Сюда относятся также измерения физических констант, прежде всего универсальных, например измерение абсолютного значения ускорения свободного падения.

2. Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторого заданного значения. В этот класс включены измерения, выполняемые лабораториями государственного контроля (надзора) за соблюдением требований технических регламентов, а также состоянием измерительной техники и заводскими измерительными лабораториями. Эти измерения гарантируют погрешность результата с определенной вероятностью, не превышающей некоторого, заранее заданного значения.

3. Технические измерения, в которых погрешность результата определяется характеристиками средств измерений. Примерами технических измерений являются измерения, выполняемые в процессе производства на промышленных предприятиях, в сфере услуг и др.

Средства измерений

Эталоны, меры, образцовые средства измерений.

Измерения выполняются с применением технических средств. Необходимыми техническими средствами для проведения измерений являются меры и измерительные приборы.

· Меры - средства измерений, предназначенные для воспроизведения физической величины заданного размера. Меры наивысшего порядка точности называют эталонами.

· Эталоны - средства измерений или их комплексы, обеспечивающие воспроизведение и хранение узаконенных единиц физических величин, а также передачу их размера нижестоящим по поверочной схеме средствам измерения.

· Образцовые средства измерений - меры, измерительные приборы или преобразователи, утвержденные в качестве образцовых для поверки по ним других средств измерений.

· Рабочие средства измерений - такие средства, которые применяют для измерений, не связанных с передачей размера единиц.

Эталоны

Средства измерения высшей точности - эталоныделятся на несколько категорий.

Эталон, воспроизводящий единицу с наивысшей в стране точностью, называется государственным первичным эталоном. Эталон единицы физической величины воспроизводят с практически наивысшей достижимой точностью па основе физических принципов на специальных установках.

Если прямая передача размера единицы от существующих эталонов с требуемой точностью технически неосуществима в виду особых условий, то для её воспроизведения единицы создаются специальные эталоны. Такими условиями могут быть: повышенное или пониженное давление; высокая влажность; измерения на предельных границах диапазона значений, измеряемой величины.

В метрологической практике широко используются вторичные эталоны, рабочие эталоны и эталоны-копии. Эти эталоны создаются и утверждаются в тех случаях, когда это необходимо для организации поверочных работ, а также для обеспечения сохранности и наименьшего износа государственного первичного эталона.

 

Существуют также следующие категории эталонов:

· эталон сравнения - вторичный эталон, применяемый для сличения эталонов, которые по каким-либо причинам не могут быть сличаемыми друг с другом;

· эталон-свидетель - вторичный эталон, применяемый для проверки сохранности государственного эталона или для его замены в случае порчи или утраты.

· эталон-копия представляет собой вторичный эталон, предназначенный для передачи размера рабочим эталонам. Он не всегда может быть точной физической копией государственного эталона.

· рабочий эталон - это вторичный эталон, применяемый для хранения единицы и передачи ее размера образцовым средствам или наиболее точным рабочим средствам измерений.

Рабочие эталоны могут быть реализованы в виде одиночного эталона (или одиночной меры), в виде группового эталона, в виде комплекса средств измерений и в виде эталонного набора.

Пример одиночного эталона - эталон массы в виде платиноиридиевой гири. Пример группового эталона - эталон-копия вольта, состоящая из 20 нормальных элементов. Пример комплекса средств измерений - эталон единицы молярной доли концентрации компонентов в газовых смесях. В этом виде измерений различные компоненты, различные диапазоны концентраций, различные газы-разбавители создают большое количество измерительных задач с общей постановкой. Поэтому, в этом случае один эталон состоит из нескольких десятков измерительных установок. Пример эталонного набора - набор средств измерения плотности жидкостей для различных участков диапазона.

 

В международных метрологических документах такой широкий набор разновидностей эталонов не предусмотрен. Международные эталоны, хранящиеся в Международном бюро по мерам и весам, воспроизводят ограниченное число единиц физических величин.

Меньшее в сравнении с отечественным число международных эталонов объясняется тем, что во многих странах понятие эталон и образцовое средство измерения не имеют четкого разграничения. Существует емкое понятие - стандарт (standart), что по смыслу может быть переведено как вторичный стандарт (образцовое средство измерения) или как эталон (исходное образцовое средство измерения).

Меры и образцовые измерительные приборы

Меры и образцовые измерительные приборы представляют собой образцовые средства измерений. Они предназначены для поверки и градуировки других средств измерений. Эти средства измерений имеют погрешность показаний в 2-3 раза меньше, чем у поверяемого прибора; на них выдаются свидетельства на право проведения поверки.

Мера может быть реализована в виде какого-либо тела, вещества или устройства, предназначенного для воспроизведения единицы физической величины, хранения единицы и передачи ее размера от одного измерительного прибора к другому. Мера воспроизводит величину, значение которой связано с принятой единицей определенным известным соотношением.

Меры и образцовые измерительные приборы, служащие для воспроизведения и хранения единиц с наивысшей достижимой на настоящем уровне техники точностью относят к эталонам. В отличие от эталона, мера воспроизводит не только единицу, но и её дольные и кратные значения. Например, мерой длины может быть метровый стержень, а также набор мер различного размера - плоскопараллельные концевые меры длины.

Меры массы - это не только эталонные килограммовые гири и их копии, но и разновесы - тела, имеющие массы других размеров.

 

Меры являются необходимым средством измерений, т.к. с их помощью осуществляется процесс передачи размера единицы физической величины от одного прибора к другому.

Во многих странах, в том числе и в России, созданы специальные хранилища мер, в функции которых входит сличение государственных мер с международными. Впервые в России такое хранилище было образовано в 1842 г. как Депо образцовых мер, а в 1893 г. была учреждена Главная палата мер и весов под руководством Д.И. Менделеева.

 

Меры как средства измерений могут изготавливаться различных классов точности, которые регламентируются соответствующими ГОСТами и поверочными схемами. Особый класс мер представляют собой так называемые стандартные образцы.

Стандартный образец - мера в виде вещества, при помощи которой размер единицы физической величины воспроизводится как свойство или как состав вещества, из которого изготовлен стандартный образец. Такими мерами являются образцовые вещества, которые при определенных условиях воспроизводят единицу измерения или ее дольное или кратное значение. Примером могут служить, например, постоянные температуры, соответствующие переходу вещества из одного состояния в другое: 1063° C - точка плавления золота, 960,8° С - точка плавления серебра, 444,6° С - точка плавления серы, 100° С - температура парообразования, 182,97° С - точка кипения кислорода и др.

 

Меры подразделяют на однозначные и многозначные.

· Однозначные меры - это меры, воспроизводящие постоянное значение физической величины. Это может быть единица измерения или кратное или дольное значение (гири, концевые меры длины, измерительные колбы, нормальные элементы ЭДС, катушки электрического сопротивления и т.д.). Для удобства пользования изготовляют наборы мер (разновесы, концевые меры длины и др.). Набор мер, объединенных в одно механическое целое с приспособлением, называют магазином мер (магазины сопротивлений, емкостей и др.).

· Многозначные меры воспроизводят не одно, а несколько дольных или кратных значений единиц измерения. Такими мерами являются, например: миллиметровая линейка и другие разделённые метры, градуированные электрические конденсаторы переменной емкости, вариометры индуктивности и др. Для воспроизведения длины в промышленности широко используют штриховые и концевые меры. Штриховые меры выполняют в виде образцов, линеек, рулеток и шкал с отсчётными элементами.

Измерительные приборы и установки

Измерения физических величин в производственной деятельности выполняются с помощью рабочих средств измерения - измерительными приборами или измерительными установками.

Измерительный прибор - средство измерения, предназначенное для выработки измерительной информации в форме, доступной для непосредственного восприятия наблюдателем. Измерительный прибор представляет собой устройство, градуированное, как правило, непосредственно в единицах измеряемой физической величины.

 

Нужен рисунок!!!

 

Измерительные приборы включают в себя: измерительный преобразователь (датчик), преобразователя сигнала в аналоговую или цифровую форму, усилитель сигнала, отсчетное устройство.

Современные приборы, кроме того, могут быть оснащены различными электронными устройствами. Например, цифровыми отсчётными устройствами, самописцами или магнитными накопителями, а также устройствами сочленения прибора с компьютером. В случае наличия у измерительных приборов цифровых выходов в виде быстродействующих портов типа USB-2 или Fire Wire (IEEE 1394) у пользователя появляются дополнительные возможности, например статистическая обработка результатов при проведении измерений в динамическом режиме, измерение параметров быстро протекающих процессов.

В зависимости от программного обеспечения процедуры измерений, появляются также многие сервисные возможности, например компьютер, может управлять процессом измерений, проводить анализ текущей измерительной информации и т.д.

Измерительный преобразователь- это устройство, предназначенное для выработки сигнала измерительной информации в форме, удобной для её передачи, преобразования, обработки и хранения. Различают первичный, промежуточный, передающий и масштабный преобразователи.

· Первичный преобразователь занимает в измерительной цепи первое место и непосредственно воспринимает измерительную информацию.

· Промежуточный преобразователь занимает в измерительной цепи второе место.

· Передающий измерительный преобразователь предназначен для дистанционной передачи сигнала.

· Масштабный преобразователь предназначен для усиления величины в заданное число раз.

Первичный преобразователь (датчик) имеет чувствительный элемент (контактный или бесконтактный), находящийся под непосредственным воздействием измеряемой величины. Преобразователи разнообразны по конструкции и принципу действия. Они могут быть: механические, оптические, емкостные, индуктивные, лазерные и др.

Усилители могут выполняться в виде катодных повторителей, амплитудно-частотных преобразователей, согласующих устройств с выходом на компьютер и др.

Измерительная установка - комплекс, включающий в себя несколько приборов и вспомогательных комплектующих устройств. Грань между прибором и установкой достаточно условна.

Так, например, если температура измеряется при помощи термопары и вольтметра, можно говорить о термоэлектрической установке, а можно то же самое назвать электрическим термометром.

Другой пример универсальный измерительный микроскоп (УИМ), являющийся прибором для измерения геометрических параметров деталей, по существу - измерительная установка с множеством дополнительных устройств и приспособлений.

Кроме измерительных приборов и вспомогательных устройств в состав измерительных установок могут входить меры или наборы мер. Например, наборы сменных шкал, объективов с разным фокусным расстоянием, наборы гирь, магазины сопротивлений и индуктивностей, нормальные гальванические элементы и т. д.

Лекция 4.

Средства измерения (окончание). Качество измерений и его контроль.

Метрологические показатели и характеристики измерительных приборов

· Диапазон показаний - область значений шкалы, ограниченная начальным и конечным значениями шкалы. Наибольшее и наименьшее значения измеряемой величины, отмеченные на шкале, называют начальным и конечным значениями шкалы прибора. Например, для оптиметра типа ИКВ - 3 диапазон показаний по шкале составляет ±0,1 мм, для длиномера типа ИЗВ диапазон показаний по шкале составляет 0 - 100 мм.

· Диапазон измерений - область значений измеряемой величины с нормированными допускаемыми погрешностями средства измерений. Для оптиметра типа ИКВ - 3 диапазон измерений размеров составляет 0 - 200 мм, для длиномера - 0 - 250 мм.

· Цена деления шкалы - разность значений величины, соответствующих двум соседним отметкам шкалы. Например, для оптиметра и длиномера это - 0,001 мм, а для микрометра - 0,01 мм.

· Длина деления шкалы - расстояние между осями (центрами) двух соседних отметок шкалы, изме-ренное вдоль воображаемой линии, проходящей через середины малых отметок шкалы. Очевидно, чем больше длина деления шкалы, тем выше усиление и тем комфортнее воспринимается наблюдателем измерительная информация.

· Чувствительность измерительного прибора - отношение изменения сигнала на выходе измерительного прибора к вызывающему его изменению измеряемой величины. Так, если при измерении диаметра вала с номинальным размером х = 100 мм изменение измеряемой величины равное 0,01 мм вызвало перемещение стрелки показывающего устройства на 10 мм, абсолютная чувствительность прибора составляет 10/0,01 = 1000, относительная чувствительность равна 10 • (0, 01/100) = 10.000. Для шкальных измерительных приборов абсолютная чувствительность численно равна передаточному отношению и с изменением цены деления шкалы чувствительность прибора остаётся неизменной. Однако на разных участках шкалы чувствительность может быть разной. Понятие чувствительности может определяться передаточной функцией, как функцией отношения сигналов на входе и на выходе преобразователя, В зависимости от вида функции чувствительность может быть либо постоянной величиной, либо величиной, зависящей от этой функции. Если функция линейная, то прибор имеет линейную шкалу, в противном случае - нелинейную. Линейность шкалы зависит не только от характеристик преобразователя, но и от выбора единиц физических величин.

· Наряду с чувствительностью существует понятие порог чувствительности, представляющее собой минимальное значение изменения измеряемой величины, которое может показать прибор. Порог чувствительности тем ниже, чем больше чувствительность. Кроме того, на него влияют конкретные условия наблюдения, например возможность, различать малые отклонения, стабильность показаний, величина трения покоя и др.

· Вариация показанийизмерительного прибора - разность показаний прибора в одной и той же точке диапазона измерений при плавном подходе "справа" и подходе "слева" к этой точке. Вариация по-казаний представляет собой алгебраическую разность наибольшего и наименьшего результатов при многократном измерении одной и той же величины в неизменных условиях. Вариация характеризует нестабильность показаний измерительного прибора.

· Градуировочная характеристика прибора - это зависимость между значениями величин на выходе и входе средства измерений, представленная в виде формулы, таблицы или графика. В большинстве случаев приборы градуируют так, чтобы цена деления шкалы превышала максимальную погрешность градуировки, но этот принцип действует не всегда. Таким образом, хотя между точностью и чувствительностью существует определенное соответствие, путать эти понятия не следует. Градуировочная характеристика прибора может быть использована для уточнения результатов измерения.

· Важной характеристикой контактных измерительных приборов является измерительное усилие, создаваемое по линии измерения и вызывающего деформацию в месте контакта измерительного наконечника с поверхностью детали.

 

Измерительные приборы могут быть аналоговые и цифровые. В аналоговых приборах показания определяются по шкале и являются непрерывной функцией изменения измеряемой величины. В цифровых приборах, вырабатываются дискретные сигналы измерительной информации, и результат представляется в цифровой форме.

Передача размера физических величин

Порядок передачи размера единиц физической величины от эталона или исходного образцового средства к средствам более низких разрядов, включая, рабочие, устанавливают в соответствии с поверочной схемой.

Поверочная схема передачи единицы длины заключается в последовательном сличении и поверке. Передача единицы производится от рабочего эталона к образцовым мерам высшего разряда, а от них образцовым мерам низших разрядов, затем к рабочим средствам измерения(оптиметрам, измерительным машинам, контрольным автоматам и т. п.). Структура поверочной схемы состоит из нескольких уровней, соответствующих ступеням передачи размера единиц.

 

Существуют различные типы поверок измерительных приборов.

· Первый тип поверки - использование образцовой меры, аттестованной в соответствии со стандартами. Такая поверка может выполняться любой службой, в том числе и отраслевой.

· Второй тип поверки - сличение показаний прибора с показаниями образцового прибора или образцовой установки. Образцовая аппаратура имеет более высокий класс точности и, соответственно, достаточно высокую стоимость, поэтому поверка проводится, как правило, в специальных организациях - центрах стандартизации и метрологии.

· Третий тип поверки - поэлементно-эквивалентный метод. Это самый трудоемкий тип поверки. Сущность его заключается в том, что если прибор имеет, например, первичный преобразователь, усилитель, аналогово-цифровой преобразователь и какие-либо вспомогательные устройства, то работоспособность и погрешности определяют для всех составных частей, не поверяя прибор как целое. В этом случае в зависимости от типа составляющих они могут поверяться как приборы, измеряющие физические величины, отличные от тех, для измерения которых предназначен прибор.

· В некоторых случаях, когда поверке подвергается новый измерительный прибор, этот метод поверки оказывается наиболее подходящим, а иногда и единственно возможным.

· Поверку некоторых типов приборов проводят без применения мер или образцовых приборов. Показания этих измерительных приборов можно контролировать по таблицам физическим констант и стандартным справочным данным. Такими константами, например являются: скорость света в вакууме , постоянная Авогадро - число частиц в 1 моле вещества, гравитационная постоянная и др. Показания этих приборов сличаются с физическими константами или со стандартными справочными данными.

 

Качество измерений и его контроль.

Виды погрешностей и причины их возникновения

Качество измерений характеризуется: точностью, достоверностью, правильностью, сходимостью и воспроизводимостью измерений, а также их стабильностью.

Точность измерительного прибора- это метрологическая характеристика прибора, определяемая погрешностью измерения, в пределах которой можно обеспечить использование данного измерительного прибора.

Различают результат наблюдения - значение величины, полученное при отдельном наблюдении, и результат измерения - значение величины, найденное в процессе измерения, после обработки результатов наблюдения.

 

В метрологии используется понятие "класс точности" прибора или меры. Класс точности средства измерений(ГОСТ 8.401-80) является обобщенной характеристикой средства намерений, определяемой пределами основных и дополнительных погрешностей, а также другими свойствами, влияющими на точность, значения которых устанавливаются в стандартах на отдельные виды средств измерения.

Класс точности характеризует свойства средства измерения, но не является показателем точности выполненных измерений, поскольку при определении погрешности измерения необходимо учитывать погрешности метода, настройки и др.

В зависимости от точности приборы разделяются на классы: первый, второй и т.д. Допускаемые погрешности для разных типов приборов регламентируются государственными стандартами.

Точность - это качество измерений, отражающее близость их результатов к истинному значению измеряемой величины.

Количественная оценка точности - обратная величина модуля относительной погрешности. Например, если погрешность измерений равна 10 в степени минус 6, то точность равна 10 в степени плюс 6.

Точность измерения зависит от погрешностей, возникающих в процессе их проведения.

· Абсолютная погрешность измерения - разность между значением величины, полученным при измерении, и ее истинным значением, выражаемая в единицах измеряемой величины.

· Относительная погрешность измерения - отношение абсолютной погрешности, измерения к истинному значению измеряемой величины.

· Систематическая погрешность измерения - составляющая погрешности измерения, остающаяся постоянной или изменяющаяся по определенному закону при повторных измерениях одной и той же величины. Систематическая погрешность может быть исключена с помощью поправки.

· Случайная погрешность - составляющая погрешности измерения, изменяющаяся при повторных измерениях одной и той же величины случайным образом.

· Грубая погрешность измерения - погрешность, значение которой существенно выше ожидаемой.

 

В зависимости от причины возникновения различают следующие виды погрешностей.

· Инструментальная погрешность - составляющая погрешности измерения, зависящая от погрешностей применяемых средств. Эти погрешности определяются качеством изготовлении самих измерительных приборов.

· Погрешность метода измерения - составляющая погрешности измерения, вызванная несовершенством метода измерений.

· Погрешность настройки - составляющая погрешности измерения, возникающая из-за несовер-шенства осуществления процесса настройки.

· Погрешность отсчёта - составляющая погрешности измерения, вызванная недостаточно точным считыванием показаний средств измерений. Погрешность возникает из-за видимого изменения относительных положений отметок шкалы вследствие перемещения глаза наблюдателя - погрешность параллакса.

· Погрешность поверки - составляющая погрешности измерений, являющаяся следствием несовер-шенства поверки средств измерений. Погрешности от измерительного усилия действуют в случае контактных измерительных приборов. При оценке влияния измерительного усилия на погрешность измерения, необходимо выделить упругие деформации установочного узла и деформации в зоне контакта измерительного наконечника с деталью.

· Влияющая физическая величина - физическая величина, не измеряемая данным средством, но оказывающая влияние на результаты измеряемой величины, например: температура и давление окружающей среды; относительная влажность и др. отличные от нормальных значений.

Погрешность средства измерения, возникающая при использовании его в нормальных условиях, когда влияющие величины находятся в пределах нормальной области значений, называют основной.

Если значение влияющей величины выходит за пределы нормальной области значений, появляется дополнительная погрешность.

 

Нормальные условия применения средств измерений - условия их применения, при которых влияющие величины имеют, нормальные значения пли находятся в пределах нормальной (рабочей) области значений. Нормальные условия выполнения линейных и угловых измерений и поверки регламентированы соответственно ГОСТ 8.050-73 и ГОСТ 8.395-80.

Нормальная температура при проведении измерений равна 20 °C (293 K), при этом рабочая область температур составляет 20 °C ± 1°.

Температурные погрешности вызываются температурными деформациями. Они возникают из-за разности температур объекта измерения и средства измерения. Существуют два основных источника, обуславливающих погрешность от температурных деформаций: отклонение температуры воздуха от 20 °C и кратковременные колебания температуры воздуха в процессе измерения.

Субъективные погрешности - погрешности, зависящие от оператора . Возможны четыре вида субъективных погрешностей: погрешность отсчитывания; погрешность присутствия (проявляется в виде влияния теплоизлучения оператора на температуру окружающей среды, а тем самым и на измерительное средство); погрешность действия (вносится оператором при настройке прибора); профессиональные погрешности (связаны с квалификацией оператора, с отношением его к процессу измерения).

Стабильность средства измерений - качественная характеристика средства измерений, отражающая неизменность во времени его метрологических свойств. В качестве количественной оценки стабильности служит нестабильность средства измерений или вариация его показаний.

Достоверность измерений характеризует степень доверия к результатам измерений. Достоверность оценки погрешностей определяют на основе законов теории вероятностей и математической статистики. Это дает возможность для каждого конкретного случая выбирать средства и методы измерений, обеспечивающие получение результата, погрешности которого не превышают заданных границ с необходимой достоверностью.

Правильность измерений - это качество измерений, отражающее близость к нулю систематических погрешностей в результатах измерений.

Метрологическое обеспечение единства измерений

Метрологическое обеспечение единства измерений - деятельность метрологических и других служб, направленная: на создание в стране необходимых эталонов, образцовых и рабочих средств измерений; на их правильный выбор и применение; на разработку и применение метрологических правил и норм; на выполнение других метрологических работ, необходимых для обеспечения требуемого качества измерений на рабочем месте, предприятии, в отрасли и национальной экономике.

Метрологическое обеспечение направлено на обеспечение единства и точности измерений для достижения установленных техническими условиями характеристик функционирования технических устройств.

Метрологическое обеспечение представляет собой комплекс научно-технических и организационно-технических мероприятий, осуществляемых через соответствующую деятельность учреждений и специалистов.

Метрологическое обеспечение измерений включает: теорию и методы измерений, контроля, обеспечения точности и единства измерений; организационно-технические вопросы обеспечения единства измерений, включая нормативно-технические документы - государственные стандарты, методические указания, технические требования и условия, регламентирующие порядок и правила выполнения работ.

Практическая деятельность организаций по метрологическому обеспечению охватывает достаточно большой круг вопросов. Осуществляется надзор за применением законодательно установленной системы единиц физических величин. Обеспечение единства и точности измерений проводится путем передачи размеров единиц физических величин от эталонов к образцовым средствам измерений и от образцовых к рабочим. Проводится надзор за функционированием государственных и ведомственных поверочных схем. Постоянно разрабатываются методы измерений дающие наивысшую точность. На этой основе создаются эталоны и образцовые средства измерений.

Осуществляется надзор за состоянием средств измерений в министерствах и ведомствах.

Метрологическое обеспечение измерительных средств на разных этапах их жизненного цикла решает вполне конкретные задачи.

· Исследуются параметры и характеристики измерительных систем и приборов для определения требований к объему, качеству и номенклатуре измерений и контроля.

· Производится анализ и выбор средств измерений и контроля из числа серийно выпускаемых. Если необходимых средств измерений не существует, то формируют технические требования на создание новых типов.

· Проводится поверка применяемых средств измерений.

· Выполняется анализ технологических процессов с точки зрения определения номенклатуры и последовательности измерительно-контрольных операций, установления метрологических характери-стик соответствующих средств измерений.

· Проводятся работы по обеспечению производства серий-но выпускаемых средств измерений и контроля, с целью своевременного обновления парка этих средств на предприятиях.

· Осуществляется метрологическая экспертиза конструкторской и технологической документации, совершенствуются методики измерения и контроля.

Ответственность за правильность, своевременность и полноту метрологического обеспечения технических устройств возлагается на их потребителей. Решение задач по метрологическому обеспечению метрологические службы организаций и предприятий.

Технической основой обеспечения единства измерений являются:

· Система (совокупность) государственных эталонов единиц и шкал физических величин - эталонная база страны.

· Система передачи размеров единиц и шкал физических величин от эталонов ко всем СИ с помощью эталонов и других средств поверки.

· Система разработки, постановки на производство и выпуска в обращение рабочих СИ,обеспечивающих исследования, разработки, определение с требуемой точностью характеристик продукции, технологических процессов и других объектов.

· Система государственных испытаний СИ (утверждение типа СИ), предназначенных для серийного или массового производства и ввоза из-за границы партиями.

· Система государственной и ведомственной метрологической аттестации, поверки и калибровки СИ.

· Система стандартных образцов состава и свойств веществ и материалов.

· Система стандартных справочных данных о физических константах и свойствах веществ и материалов.