Петля магнитного гистерезиса

Различные ферромагнитные материалы обладают неодинаковой способностью проводить магнитный поток. Основной характеристикой ферромагнитного материала является петля магнитного гистерезиса В(Н). Эта зависимость определяет значение магнитной индукции, которая будет возбуждена в магнитопроводе из данного материала при воздействии некоторой напряженности поля.

Рассмотрим процесс перемагничивания ферромагнетика. Пусть первоначально он был полностью размагничен. Сначала индукция быстро возрастает за счет того, что магнитные диполи ориентируются по силовым линиям поля, добавляя свой магнитный поток к внешнему. Затем ее рост замедляется по мере того, как количество неориентированных диполей уменьшается и, наконец, когда практически все они ориентируются по внешнему полю рост индукции прекращается и наступает режим насыщения.

 

 

Если процесс циклического перемагничивания повторять при разных амплитудных значениях тока (Н), то получим семейство петель магнитного гистерезиса. При некотором максимальном значении тока, а значит Нmax, площадь петли гистерезиса практически не увеличивается. Наибольшая по площади петля называется предельной петлей гистерезиса.

Кривая, соединяющая вершины петель - на рисунке жирная линия, называется основной кривой намагничивания.

После нескольких (около 10) циклов изменения напряженности от положительного до отрицательного максимальных значений зависимость B=f(H) начнет повторяться и приобретет характерный вид симметричной замкнутой кривой, называемой петлей гистерезиса. Гистерезисом называют отставание изменения индукции от напряженности магнитного поля.

Симметричная петля гистерезиса, полученная при максимальной напряженности поля Hm, соответствующей насыщению ферромагнетика, называется предельным циклом.

Для предельного цикла устанавливают также значения индукции Br при H = 0, которое называется остаточной индукцией, и значение Hc при B = 0, называемое коэрцитивной силой. Коэрцитивная (удерживающая) сила показывает, какую напряженность внешнего поля следует приложить к веществу, чтобы уменьшить остаточную индукцию до нуля.

Форма и характерные точки предельного цикла определяют свойства ферромагнетика. Вещества с большой остаточной индукцией, коэрцитивной силой и площадью петли гистерезиса (кривая 1 рис.8а) называются магнитнотвердыми.

 

 

Рис. 8а

Они используются для изготовления постоянных магнитов. Вещества с малой остаточной индукцией и площадью петли гистерезиса (кривая 2 рис.8а) называются магнитномягкими и используются для изготовления магнитопроводов электротехнических устройств, в особенности работающих при периодически изменяющемся магнитном потоке.

Свойства ферромагнитных материалов в переменных магнитных полях

 

При возбуждении переменного магнитного потока в магнитопроводах электротехнических устройств происходит непрерывное циклическое перемагничивание ферромагнитного материала.

В каждый момент времени магнитное состояние материала определяется точкой В(Н) на симметричной петле (рис. 9), по конфигурации похожей на петлю магнитного гистерезиса. Получаемая при быстрых перемагничиваниях петля называется динамической петлей, и она отличается от статической петли магнитного гистерезиса, получаемой при медленных перемагничиваниях. Динамическая петля (показана пунктиром) шире статической.

Энергия, выделяющаяся за один цикл перемагничивания, определяется площадью динамической петли. Эта энергия затрачивается источником на:

Рис. 9

1) преодоление сил магнитного гистерезиса (определяется площадью статической петли);

2) на покрытие потерь, связанных с нагревом ферромагнитного материала вихревыми токами.

Для уменьшения потерь на гистерезис (перемагничивание) необходимо применять магнитомягкие материалы (с узкой петлей магнитного гистерезиса).

Для уменьшения потерь от вихревых токов магнитопровод выполняют шихтованным (из тонких изолированных друг от друга пластин). Кроме этого, повышают удельное электрическое сопротивление материала, увеличивая содержание кремния в стали.

Созданы и специальные сплавы, такие как ферриты, которые обладают высоким электрическим сопротивлением, благодаря чему уменьшаются не только магнитные потери, но и электрические, обусловленные вихревыми токами.

Магнитные цепи электротехнических устройств постоянного тока

 

В технике широко используют различные электромагнитные механизмы. Одни из них преобразуют электрическую энергию в механическую (электродвигатели, реле, электроизмерительные механизмы), другие создают магнитные поля с необходимыми характеристиками.

Магнитной цепью называют совокупность магнитопровода, образующего замкнутый путь магнитному потоку, и элементов возбуждающих магнитное поле (обмотки с током, постоянные магниты).

Магнитная цепь предназначена для создания в рабочем объеме электротехнического устройства магнитного поля требуемой интенсивности, конфигурации и направления.

 

 

При анализе магнитных цепей нужно различать путь основного магнитного потока Ф и потокосцепление рассеяния Фd, образованного магнитными линиями вне ферромагнитного материала. Необходимо представлять конфигурацию магнитного поля в рабочем объеме (поля выпучивания).

Классификация магнитных цепей

 

Магнитные цепи могут быть однородными (все участки магнитопровода из одного ферромагнитного материала) и неоднородными (например, с воздушным зазором).

Магнитные цепи бывают разветвленными и неразветвленными, симметричными и несимметричными.