ВЗАИМОДЕЙСТВИЕ ДИСЛОКАЦИЙ С ВАКАНСИЯМИ И МЕЖУЗЕЛЬНЫМИ АТОМАМИ
Атмосферы Сузуки.
В Г.Ц.К. решетке дефект упаковки растянутой дислокации является тонкой прослойкой с чередованием слоев, характерным для г.п. решетки. Растворимость элемента в общем случае должна быть разной в г.ц.к. и г.п. решетках. При достаточно высокой температуре атомы перераспределяются диффузионным путем между дефектом упаковки и г.ц.к. решеткой аналогично перераспределению элементов между двумя фазами. Поэтому такое перераспределение атомов было названо Сузуки химическим взаимодействием растянутой дислокации с растворенными атомами. Примесные атомы или диффундируют в дефект упаковки или уходят из него. При этом средняя концентрация в основном объеме с г. ц. к. решеткой остается практически постоянной. Измененную концентрацию примесных атомов или атомов легирующего элемента в дефекте упаковки растянутой дислокации называют атмосферой Сузуки.
Самопроизвольный процесс образования атмосфер Сузуки уменьшает энергию дефекта упаковки и тем самым приводит к увеличению ширины растянутой дислокации. Энергия химической связи примесного атома с растянутой дислокацией около 0,1— 0,2 эВ и более. В отличие от упругого коттрелловского взаимодействия химическое взаимодействие Сузуки проявляется одинаково сильно в случае краевых и винтовых дислокаций в г. ц. к. решетке. Влиянию атмосфер Сузуки на поведение дислокаций уделяется особенно большое внимание при исследовании растворов на основе меди и никеля.
Поле напряжений краевой дислокации взаимодействует с полем упругих напряжений вакансии и межузельного атома. Межузельный атом притягивается к области гидростатического растяжения, а вакансия — к области гидростатического сжатия. Упругое взаимодействие вакансий с дислокациями слабее, чем межузельных атомов, вокруг которых деформация решетки больше (см. табл. 4).
Вакансии и межузельные атомы, притянувшись к дислокации, могут аннигилировать на порогах. На рис. 28, б показан порог на краевой дислокации — излом края экстраплоскости. Часть экстраплоскости оканчивается на одной плоскости скольжения, а часть — на соседней. Высота ступеньки — одно межатомное расстояние. Когда вакансия подходит к ступеньке и оседает здесь, ступенька смещается на одно межатомное расстояние вдоль края экстраплоскости (на рис. 28, б справа налево). При этом вакансия как таковая исчезает. Если же к ступеньке подходит и присоединяется межузельный атом, то она смещается на одно межатомное расстояние в противоположном направлении, а этот атом перестает существовать как межузельный — он становится частью экстраплоскости. Следовательно, краевая дислокация может служить стоком для вакансий и межузельных атомов.
Результат взаимодействия краевой дислокации с примесными атомами принципиально отличен от результата ее взаимодействия с вакансиями и межузельными атомами основного металла. Если последние могут аннигилировать, то примесные атомы сохраняют свою индивидуальность, образуя атмосферы.
Если скорость подхода вакансий и межузельных атомов к дислокации больше скорости исчезновения их на порогах, то эти де фекты могут образовать атмосферу вокруг линии дислокации тиш коттрелловской примесной атмосферы.
Смешанные дислокации упруго взаимодействуют с вакансиями и межузельными атомами в соответствии с их краевой компонентой.
Имеется точка зрения, согласно которой вакансии могут притягиваться к дислокации любого типа, в том числе и к чисто винтовой. Объясняется это тем, что вакансия — пустое место и в ее присутствии упругая энергия дислокации локально уменьшается.
геликоидальных дислокаций, у которых линия дислокации закручена в весьма Притяжением вакансий к винтовой дислокации объясняют образование правильную спираль. Природа образования геликоидальной дислокации окончательно не выяснена. Геометрия превращения прямолинейной винтовой дислокации АВ в геликоидальную А’В’ вследствие присоединения группы вакансий Р показана по этапам на рис. 102.
Геликоидальные дислокации свойственны закаленным с высоких температур алюминиевым сплавам, что подтверждает ведущую роль вакансий в их образовании (после закалки с высоких температур решетка сильно пересыщена вакансиями).
Перестраивание прямолинейной винтовой дислокации в геликоидальную вследствие присоединения вакансий является своеобразным переползанием винтовой дислокации. При этом, как легко понять из рис. 102, дислокация приобретает краевую компоненту и становится смешанной.
Не следует путать понятия «винтовая дислокация» и «геликоидальная дислокация». У винтовой дислокации вектор Бюргерса параллелен линии дислокации и атомы закручены по винту в области ядра дислокации вокруг ее оси. У геликоидальной же дислокации по спирали закручена сама линия дислокации, а вектор Бюргерса параллелен оси этой спирали и составляет разные углы с линией дислокации в разных ее участках (будучи инвариантом дислокации, вектор Бюргерса не меняет своего направления при превращении прямолинейной дислокации в геликоидальную).
Лекция разработана «___»________200__г.
_______________________Фигуровский Д.К.
[1] В ионных кристаллах на пороге краевой дислокации рядом могут оказаться два иона одинакового знака; такой порог несет большой электрический заряд. Электростатическое притяжение ионов примеси к заряженным порогам на дислокациях в ионных кристаллах весьма велико (0,1—1 эВ) и может значительно превышать упругое притяжение.