Динамическое торможение двигателя параллельного возбуждения
Основные сведения
Электрическое торможение двигателей постоянного тока
В электроприводах различают механическое и электрическое торможение.
Под механическим понимают торможение электропривода при помощи тормозных устройств, принцип действия которых основан на использовании трения.
Механическое торможение обеспечивает полную остановку электропривода и его фиксацию в заторможенном состоянии. Этот вид торможения применяется в судовых электроприводах, работа которых связана с преодолением действия силы тяжести – грузоподъёмных и якорно-швартовных.
Под электрическим торможением понимают создание на валу электродвигателя электромагнитного момента, направленного навстречу вращению якоря (ротора). Для электрического торможения применяют специальные узлы в схемах управления электроприводами.
Как правило, электрическое торможение применяют не для полной остановки электропривода, а для предварительного уменьшения скорости до такой, при которой можно начинать механическое торможение.
Например, существующие электромагнитные тормоза серий ДПМ постоянного тока и ТМТ переменного можно отключать при начальной скорости не более 750 об /мин.
Значит, в электроприводе 3-скоростной лебёдки со скоростями 3000, 1500 и 750 об / мин нельзя начинать торможение со скоростей 3000 и 1500 об / мин, иначе на валу двигателя возникнут большие динамические усилия, которые могут повредить двигатель, передачу и механизм. Кроме того, из-за увеличенного трения тормоз будет перегреваться и быстро изнашиваться.
Электрическое торможение применяют в электроприводах судовых грузоподъемных механизмов, работающих с частыми пусками и остановками.
Различают 4 вида электрического торможения:
1. динамическое;
2. рекуперативное;
3. торможение противовключением при активном статическом моменте;
4. торможение противовключением при реактивном статическом моменте.
На судах из перечисленных видов торможения, в основном, применяется динамическое и рекуперативное.
В схеме динамического торможения ( рис. 9.8, а ) используются контакт КТ тормозного контактора контакт КЛ линейного. Эти контакты всегда находятся в противоположном состоянии: если замкнут контакт КЛ, разомкнут контакт КТ, и наоборот.
Рис. 13.3 Схема (а) и механические характеристики (б) при динамическом торможении двигателя постоянного тока
До начала торможения, при работе двигателя, контакт КЛ замкнут, контакт КТ разомкнут. Двигатель подключен к сети и вращается со скоростью ω .
Ток в обмотке якоря
I = (U – E) / R ,
где: Е = k ω Ф – противоЭ.Д.С. обмотки якоря, пропорциональна скорости двигателя ω .
Этот ток протекает через якорь в направлении слева направо (в соответствии с полярностью напряжения питающей сети).
Для торможения размыкают контакт КЛ и замыкают КТ. При размыкании контакта КЛ двигатель отключается от сети, поэтому напряжение на обмотке якоря U = 0.
При замыкании контакта КТ к обмотке якоря двигателя подключается тормозной токоограничивающий резистор R , причём обмотка якоря и резистор соединены последовательно.
Ток в такой цепи определяется по закону Ома
I = (U – E) / (R + R ) = (0–Е)/ (R + R ) = – Е/( R + R ).
В этой формуле ток якоря имеет знак «минус», значит, направление тока в обмотке якоря изменилось на обратное – справа налево.
Изменение направления тока приводит к изменению знака электромагнитного момента двигателя М = k(– I )Ф <0, этот момент становится тормозным.
Двигатель переходит на искусственную тормозную характеристику во 2–м квадранте и постепенно уменьшает скорость. По мере уменьшения скорости уменьшается противо «ЭДС» Е = k ωФ, ток якоря и электромагнитный момент.
В момент остановки якоря (точка 0 на механической характеристики) скорость ω = 0, противо «ЭДС» Е = 0, ток якоря I = 0 и электромагнитный момент двигателя М = 0.
При реактивном статическом моменте (насос, вентилятор) процесс торможения закончится в точке 0 (Рис. 13.3).
При активном статическом моменте процесс может иметь продолжение, а именно: если в точке 0 двигатель не затормозить, он под действием груза реверсирует и станет разгоняться в обратном направлении до скорости ω.
Полярность противоЭДС изменится на обратную
Е = k(– ω)Ф < 0
и на обратное изменится направление тока якоря I
I = – ( –Е) /( R + R ) = Е /( R + R ) > 0.
Поэтому знак электромагнитного момента изменится на обратный, т.е. он вновь направлен на подъём. При этом двигатель работает в режиме тормозного спуска, притормаживая груз и ограничивая скорость спуска груза значением скорости ω (точка А).
Особенности торможения:
1. простота торможения, т.к. для его получения нужен тормозной контактор КТ и тормозной резистор;
2. торможение позволяет полностью остановить якорь ( т. «0» на рис. 9.8, б );
3. торможение широко применяется в электроприводах грузоподъемных механизмов для предварительного сброса скорости перед срабатыванием основного, электромагнитного тормоза, обеспечивающего полную остановку груза.