Анализ устойчивости по расположению корней характеристического уравнения

Определение устойчивости

Устойчивость линейных непрерывных систем

 

 

Устойчивость – это важнейшее свойство системы автоматического управления. Если система не является устойчивой, то она неработоспособная.

Пусть система находится в состоянии равновесия и, начиная с некоторого момента времени, на нее начинают действовать ограниченные воздействия – возмущения. Если система под действием ограниченных возмущений имеет способность мало отклоняться от состояния равновесия, то она устойчива. В противном случае достаточно действия небольшого возмущения чтобы далеко отклонилась от состояния равновесия.

Возмущения могут быть непрерывными или импульсными, действующие на систему, в какие – то моменты времени. Доказывается что, если система устойчива при действии на неё начального мгновенного возмущения, то она будет устойчивой и при действии других видов ограниченных возмущений. Математически начальное мгновенное возмущение описывается дельта – функцией d(t). Таким образом, судить об устойчивости системы можно по виду ее импульсной переходной характеристики. Как отмечалось в разделе 2.1 (см.(2.27), (2.28)), действие идеального импульса на линейную систему приводит к мгновенному изменению начальных условий (выводу её из состояния равновесия). Если в дальнейшем, будучи предоставлена самой себе, система сможет вернуться в состояние равновесия, то она устойчива.

Итак, если функция g(t) и её производные до (n-1) – го порядка ограничены, то система устойчива. Если, кроме того, пределы этих функций с течением времени стремятся к нулю, то система устойчива асимптотически.

 

 

В разделе 2.1 отмечалось, что характер изменения функции

g(t) =

(и её производных) зависит исключительно характера корней характеристического уравнения системы (2.17) или (2.31). Наглядное представление о характере корней и его влияния на вид функции g = g(t) даёт их расположение на комплексной плоскости. Будут рассматриваться только некратные корни поскольку в дальнейшем будет необходимо обеспечивать условия, при которых система устойчива с некотором запасом. Итак, возможны следующие варианты решения характеристического уравнения.

 
 

 


1. Все корни si < 0, i = 1, 2, …, n, вещественные и отрицательные, следовательно, все экспоненты импульсной переходной характеристики g = g(t) – убывающие функции времени и их сумма в пределе равна нулю.

. Система асимптотически устойчивая.

2. Все корни si < 0 , i = 2, 3, …, n, вещественные и отрицательные, один корень – положительный s1> 0. Эта единственная экспонента с течением времени возрастает и потому g = g(t) – возрастающая функция времени

. Система неустойчивая.

 
 


3. Все корни si < 0 , i = 3, 4, …, n, вещественные и отрицательные, пара комплексно – сопряженных корней , a > 0. При изучении импульсной переходной характеристики колебательного звена было показано, что комплексно – сопряженным корням с отрицательной вещественной частью (см. (2.50)) соответствует затухающий колебательный процесс (см. рис. 2.11). Следовательно (с учетом сказанного в пункте 1), функция g = g(t) в пределе равна нулю

. Система асимптотически устойчивая.

 
 

4. Все корни si < 0 , i = 3, 4, …, n, вещественные и отрицательные, пара комплексно – сопряженных корней , a > 0 имеет положительную вещественную часть. Этой паре корней соответствует незатухающий колебательный процесс и, следовательно, g = g(t) – возрастающая функция времени

 
 

. Система неустойчивая.

Из всего перечисленного вытекают следующие заключения:

 

· Система устойчива, если все корни её характеристического уравнения имеют отрицательные вещественные части, т.е. находятся в левой полуплоскости комплексной плоскости. Мнимая ось комплексной плоскости является границей устойчивости.

· Система неустойчива, если хотя бы один из корней характеристического уравнения имеет положительную вещественную часть.

· Система находится на апериодической границе устойчивости, если все корни её характеристического уравнения имеют отрицательные вещественные части, а один корень вещественный и равен нулю.

· Система находится на колебательной границе устойчивости, если все корни её характеристического уравнения имеют отрицательные вещественные части, а пара комплексно – сопряженных корней имеет нулевую вещественную часть.