Предел функции в точке.
Лекция № 6
Список используемой литературы
Вопросы для самопроверки
- Функция.
2. Область определения функции
3. Способы задания функции
4. Основные элементарные функции и их графики
1 Ухоботов, В. И. Математика: Учебное пособие.- Челябинск: Челяб. гос. ун-т, 2006.- 251 с.
2 Ермаков, В.И. Сборник задач по высшей математике. Учебное пособие. –М.: ИНФРА-М, 2006. – 575 с
3 Ермаков, В.И. Общий курс высшей математики. Учебник. –М.: ИНФРА-М, 2003. – 656 с.
Тема «Предел функции»
Цель:рассмотреть понятие предела функции, связь между бесконечно большими и бесконечно малыми функциями, основные теоремы о пределах, некоторые замечательные пределы.
Ключевые слова: предел, бесконечно малые, бесконечно большие функции, замечательные пределы.
Вопросы:
- Предел функции в точке
- Предел функции при стремлении аргумента к бесконечности
- Основные теоремы о пределах
- Бесконечно малые функции
- Бесконечно большие функции и их связь с бесконечно малыми.
- Сравнение бесконечно малых функций
- Свойства эквивалентных бесконечно малых
- Некоторые замечательные пределы
- Решение примеров
y f(x)
A + e
A
A - e
0 a - D a a + D x
Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)
Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что
0 < ïx - aï < D
верно неравенство ïf(x) - Aï< e.
То же определение может быть записано в другом виде:
Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.
Запись предела функции в точке:
Определение. Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.
у
f(x)
А2
А1
0 a x
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.
Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).
2. Предел функции при стремлении аргумента к бесконечности.
Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство
При этом предполагается, что функция f(x) определена в окрестности бесконечности.
Записывают:
Графически можно представить:
y y
A A
0 0
x x
y y
A A
0 0
x x
Аналогично можно определить пределы для любого х>M и
для любого х<M.
3. Основные теоремы о пределах.
Теорема 1. , где С = const.
Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.
Теорема 2.
Теорема 3.
Следствие.
Теорема 4. при
Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.
Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.
Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .
Определение. Функция f(x) называется ограниченнойвблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.
Теорема 7. Если функция f(x) имеет конечный предел при х® а, то она ограничена вблизи точки х = а.