Двойной веполь



Двойной веполь описывается формулами (32) и (33)

Задача 4.1.

В лаборатории под руководством академика П.Л.Капицы исследовалась искусственная шаровая молния в герметичной кварцевой цилиндрической камере, заполненной гелием под давлением 3 атм. Под действием мощного электромагнитного поля в гелии возникает плазменный шнуровой разряд, стягивающийся в сферический сгусток плазмы - "шаровую молнию". Для удержания "шаровой молнии" в центре камеры используют соленоид, расположенный вокруг камеры. По программе эксперимента нужно было увеличить мощность шаровой молнии, для чего повысить мощность электромагнитного излучения.

Плазма стала более горячей, и, следовательно, менее плотной. Шаровая молния при этом становится легче и всплывает вверх, касаясь стенок камеры и разрушая их. Электромагнитные силы не уравновешивают архимедовы силы. Чтобы удержать молнию в центре камеры, попробовали повысить мощность магнитного поля в соленоиде, но ничего не получилось. Сотрудники предложили строить новую установку с более мощным соленоидом, но П.Л.Капица поступил иначе. Как?

Дан неэффективно управляемый веполь: В1 - молния, на которую действует гравитационное поле - П1, В2 - газ, который не уравновешивает действие гравитационного поля.


Чтобы повысить управляемость рассмотренного веполя необходимо ввести противодействующее поле П2 в соответствии с формулой (33).


Поле П2 должно противодействовать гравитационному полю П1. Эффективнее всего было бы использовать электромагнитное поле, но для этого нужно было бы полностью переделывать установку. В соответствии с тенденцией развития веполей первоначально следует использовать механические поля. Наиболее эффективное, в данном случае - поле центробежных сил.

П.Л.Капица предложил завертеть газ, придавая ему непрерывное вращение, которое осуществлялось воздуходувками, хорошо знакомые всем по домашнему пылесосу. Впрочем, именно домашний пылесос и был использован на первых порах.