Как одна молекула объединила три науки (об открытии строения молекулы ДНК)
В. Иванов,
доктор физико-математических наук
Шестьдесят лет назад было сделано замечательное научное открытие. 25 апреля 1953 года была опубликована статья о том, как устроена самая загадочная молекула – молекула дезоксирибонуклеиновой кислоты. Сокращенно её называют ДНК. Эта молекула встречается во всех живых клетках всех живых организмов. Обнаружили ее ученые более ста лет назад. Но тогда никто не знал, как эта молекула устроена и какую роль играет в жизни живых существ.
Окончательно разгадать тайну удалось английскому физику Френсису Крику и американскому биологу Джеймсу Уотсону. Их открытие было очень важным. И не только для биологов, которые узнали наконец, как устроена молекула, управляющая всеми свойствами живого организма. Одно из крупнейших открытий человечества было сделано так, что совершенно невозможно сказать, какой науке это открытие принадлежит, – так тесно слились в нем химия, физика и биология. Этот сплав наук и есть самая яркая черта открытия Крика и Уотсона.
НА ОДНУ МОЛЕКУЛУ МОЖНО ВЗГЛЯНУТЬ ПО-РАЗНОМУ
Ученых давно интересовала тайна главного свойства всех живых организмов – размножение. Почему дети – идет ли речь о людях, медведях, вирусах – похожи на своих родителей, бабушек и дедушек? Для того, чтобы открыть тайну, биологи исследовали самые разные организмы.
И ученые выяснили, что за сходство детей и родителей отвечают особые частицы живой клетки – хромосомы. Они похожи на маленькие палочки. Небольшие участки палочки-хромосомы назвали генами. Генов очень много, и каждый отвечает за какой-нибудь признак будущего организма. Если говорить о человеке, то один ген определяет цвет глаз, другой – форму носа... Но из чего состоит ген и как он устроен, этого ученые не знали. Правда, было уже известно: в хромосомах содержится ДНК и ДНК имеет какое-то отношение к генам.
Разгадать тайну гена хотели разные ученые: каждый смотрел на эту тайну с точки зрения своей науки. Но чтобы узнать, как устроен ген, маленькая частица ДНК, надо было узнать, как устроена и из чего состоит сама молекула.
Химики, которые исследуют химический состав веществ, изучали химический состав молекулы ДНК. Физики стали просвечивать ДНК рентгеновскими лучами, как обычно они просвечивают кристаллы, чтобы узнать, как эти кристаллы устроены. И выяснили, что ДНК похожа на спираль.
Биологи интересовались загадкой гена, конечно, больше всех. И Уотсон решил заняться проблемой гена. Для того, чтобы поучиться у передовых биохимиков и побольше узнать о природе гена, он отправился из Америки в Европу.
В то время Уотсон и Крик еще не знали друг друга. Уотсон, проработав некоторое время в Европе, никак существенно не продвинулся в выяснении природы гена.
Но на одной из научных конференций он узнал, что физики изучают строение молекулы ДНК с помощью своих, физических методов. Узнав это, Уотсон понял, что тайну гена ему помогут раскрыть физики, и отправился в Англию, где устроился работать в физическую лабораторию, в которой исследовали биологические молекулы. Здесь-то и произошла встреча Уотсона и Крика.
КАК ФИЗИК КРИК ЗАИНТЕРЕСОВАЛСЯ БИОЛОГИЕЙ
Крик вовсе не интересовался биологией. До тех пор, пока ему на глаза не попалась книжка известного физика Шредингера "Что такое жизнь с точки зрения физики?".
В этой книжке автор высказал предположение, что хромосома похожа на кристалл. Шредингер заметил, что "размножение" генов напоминает рост кристалла, и предложил ученым считать ген кристаллом. Это предложение заинтересовало Крика и других физиков. Вот почему.
Кристалл – очень простое по структуре физическое тело: в нем все время повторяется одна и та же группа атомов. А устройство гена считали очень сложным, раз их так много и все они разные. Если гены состоят из вещества ДНК, а молекула ДНК устроена так же, как кристалл, то получается: она одновременно и сложная и простая. Как же так? Уотсон и Крик понимали: физики и биологи слишком мало знают о молекуле ДНК. Правда, кое-что было известно о ДНК химикам.
КАК УОТСОН ПОМОГ ХИМИКАМ, А ХИМИКИ – КРИКУ
Химики знали, что в состав молекулы ДНК входят четыре химических соединения: аденин, тимин, гуанин и цитозин. Их обозначили по первым буквам – А, Т, Г, Ц. Причем аденина было столько же, сколько тимина, а гуанина – сколько цитозина. Почему? Этого химики понять не могли.
Они догадывались: это как-то связано со структурой молекулы. Но как, не знали. Химикам помог биолог Уотсон.
Уотсон привык к тому, что в живой природе многое встречается парами: пара глаз, пара рук, пара ног, существуют, например, два пола: мужской и женский... Ему казалось, что и молекула ДНК может состоять из двух цепочек. Но если ДНК похожа на спираль, как выяснили физики при помощи рентгена, то как в этой спирали две цепочки держатся друг за друга? Уотсон предположил, что при помощи А, Г, Ц и Т, которые, как руки, протянуты друг к другу. Вырезав из картона контуры этих химических соединений, Уотсон долго прикладывал их то так, то эдак, пока вдруг не увидел: аденин прекрасно соединяется с тимином, а гуанин с цитозином.
Уотсон рассказал об этом Крику. Тот быстро сообразил, как должна выглядеть двойная спираль на самом деле – в пространстве, а не на рисунке.
Оба ученых начали строить модель ДНК.
Как это – "строить"? А вот как. Из молекулярного конструктора, который напоминает детский конструктор-игрушку. В молекулярном конструкторе деталями служат шарики-атомы, которые пристегиваются друг к другу кнопочками в том порядке, в каком расположены атомы в веществе.
Молекулярный конструктор придумал другой ученый – химик Полинг. Он строил модели молекул белков и выяснил, что в них обязательно должны быть участки, похожие на спирали. Очень скоро это подтвердили физики той лаборатории, где работал Крик. Важная биологическая проблема была решена теоретическим путем.
Способ Полинга так понравился Крику, что он предложил Уотсону построить модель ДНК при помощи молекулярного конструктора. Вот так была создана модель знаменитой Двойной спирали ДНК, которую вы можете увидеть на рисунке.
И что замечательно: из-за того, что А в одной цепи может "склеиваться" только с Т в другой, а Г – только с Ц, автоматически выполняется "химическое" правило, по которому количество А равно количеству Т, а количество Г равно количеству Ц. Но самое о главное, что, глядя на Двойную спираль ДНК, сразу понятно, как решить загадку размножения генов. Достаточно "размотать" косичку ДНК, и каждая цепочка сможет достроить на себе новую так, чтобы А склеивалось с Т, а Г – с Ц: был один ген – стало два. Из-за того, что размеры пар А-Т и Г-Ц одинаковы, молекула ДНК по структуре в самом деле напоминает кристалл, как предполагали физики.
И в то же время этот "кристалл" может содержать самые разные сочетания А, Т, Ц, Г, и поэтому все гены разные.
Решение проблемы гена Уотсоном и Криком привело к тому, что буквально за 2–3 года сформировалась целая новая область естествознания, которую назвали молекулярной биологией. Часто ее называют физико-химической биологией.
Можно привести и другие примеры взаимного проникновения разных наук друг в друга. Математика, например, широко используется в астрономии, физике и даже в... лингвистике, науке о строении языка.
Математические методы, например, позволяют установить подлинного автора неизвестных рукописей. Отыскали в архивах неизвестное стихотворение, а кто его автор? Ученые предполагают, что написал известный поэт. Но как проверить это предположение? Математики подсчитывают, сколько раз в этом произведении встречается какое-нибудь определенное слово, или, скажем, в какой последовательности встречаются слова в тексте. Такие же расчеты делают и в известном произведении предполагаемого автора. Результаты сравнивают. Если они совпадают – значит, найдена подлинная рукопись. Так математики возвращают нам, читателям, украденные временем произведения известных писателей и поэтов.
Или, например, физика и музыка... Что может быть общего у точной науки с искусством? Оказывается, есть общее.
На струнных инструментах – на скрипке, виолончели – музыкант сам выбирает нужную высоту звука. Не нравится скрипачу, как звучит, к примеру, нота "до", кажется ему, что она должна звучать чуть выше или, наоборот, чуть ниже, – он сам подберет на струне точное звучание. Пианист этого сделать не может. На клавиатуре каждая клавиша – определенная нота. Сколько раз ни нажимай, она будет звучать одинаково. Значит, для точного исполнения музыкального произведения рояль должен быть очень точно настроен. Физики высчитали ту частоту колебания звука, по которой музыкальные клавишные инструменты можно настроить наиболее точно. Как видите, трудно пришлось бы музыкантам и лингвистам без физиков и математиков.
Современному человеку необходимо обладать знаниями самыми разнообразными. Сегодняшнему ученому это особенно важно. В наше время появилось много наук составных: физическая химия и химическая физика, даже, как вы теперь знаете, физико-химическая биология. Какое отношение все это имеет к вам? Самое прямое.
В школе я не думал даже, что когда-нибудь стану заниматься биологией. Увлекался больше точными науками. А вот теперь биологией занимаюсь.
Неправильно разделять школьные предметы на те, которые нужны, и те, которые не нужны. Кто знает, что может пригодиться потом?
УОТСОН (Watson), Джеймс Девей
род. 6 апреля 1928 г.
Нобелевская премия по физиологии и медицине, 1962 г.
совместно с Фрэнсисом Криком и Морисом Г.Ф. Уилкинсом
Американский молекулярный биолог Джеймс Девей Уотсон родился в Чикаго (штат Иллинойс) в семье Джеймса Д. Уотсона, бизнесмена, и Джин (Митчелл) Уотсон и был их единственным ребенком. В Чикаго он получил начальное и среднее образование. Вскоре стало очевидно, что Джеймс необыкновенно одаренный ребенок, и его пригласили на радио для участия в программе «Викторины для детей». Лишь два года проучившись в средней школе, Уотсон получил в 1943 г. стипендию для обучения в экспериментальном четырехгодичном колледже при Чикагском университете, где проявил интерес к изучению орнитологии. Став бакалавром естественных наук в университете Чикаго в 1947 г., он продолжил образование в Индианском университете Блумингтона.
К этому времени Уотсон заинтересовался генетикой и начал обучение в Индиане под руководством специалиста в этой области Германа Дж. Мёллера и бактериолога Сальвадора Лурия. Уотсон написал диссертацию о влиянии рентгеновских лучей на размножение бактериофагов (вирусов, инфицирующих бактерии) и получил в 1950 г. степень доктора философии. Субсидия Национального исследовательского общества позволила ему продолжить исследования бактериофагов в Копенгагенском университете в Дании. Там он проводил изучение биохимических свойств дезоксирибонуклеиновой кислоты (ДНК) бактериофага. Однако, как он позднее вспоминал, эксперименты с фагом стали его тяготить, ему хотелось узнать больше об истинной структуре молекул ДНК, о которых так увлеченно говорили генетики.
Нуклеиновые кислоты впервые были открыты в ядре человеческих клеток швейцарским исследователем Фридрихом Мишером в 1869 г. В начале XX в. биологам и биохимикам удалось выяснить структуру и основные свойства клетки. Было установлено, что одна из нуклеиновых кислот, ДНК, представляет собой чрезвычайно большую молекулу, состоящую из структурных единиц, названных нуклеотидами, каждый из которых содержит азотистые основания.
К 1944 г. американский биолог Освальд Авери, работая в Рокфеллеровском институте медицинских исследований (в настоящее время Рокфеллеровский университет), представил доказательства, что гены состоят из ДНК; эта гипотеза была подтверждена в 1952 г. Альфредом Херши и Мартой Чейз. Хотя было ясно, что ДНК контролирует основные биохимические процессы, происходящие в клетке, но ни структура, ни функция молекулы не были известны.
Весной 1951 г., во время пребывания на симпозиуме в Неаполе (Италия), Уотсон встретил Мориса Г.Ф. Уилкинса, английского исследователя. Уилкинс и Розалин Франклин, его коллега по Королевскому колледжу Кембриджского университета, провели рентгеноструктурный анализ молекул ДНК и показала, что они представляют собой двойную спираль, напоминающую винтовую лестницу. Полученные ими данные привели Уотсона к мысли исследовать химическую структуру нуклеиновых кислот. Национальное общество по изучению детского паралича выделило субсидию. В октябре 1951 г. он отправился в Кавендишскую лабораторию Кембриджского университета для исследования пространственной структуры белков совместно с Джоном К. Кендрю. Там он познакомился с Фрэнсисом Криком, физиком, интересовавшимся биологией и писавшим в то время докторскую диссертацию.
Обнаружив сходство своих интересов, Уотсон и Крик в 1952 г. решили попытаться определить структуру ДНК. Им было известно, что существует два типа нуклеиновых кислот – ДНК и рибонуклеиновая кислота (РНК), каждая из которых состоит из моносахарида группы пентоз, фосфата и четырех азотистых оснований: аденина, тимина (в РНК – урацила), гуанина и цитозина. В течение последующих восьми месяцев Уотсон и Крик обобщили полученные результаты с уже имевшимися, сделав сообщение о структуре ДНК в феврале 1953 г. Месяцем позже они создали трехмерную модель молекулы ДНК, сделанную из шариков, кусочков картона и проволоки.
Согласно модели Крика – Уотсона, ДНК представляет двойную спираль, состоящую из двух цепей дезоксирибозофосфата, соединенных парами оснований аналогично ступенькам лестницы. Посредством водородных связей аденин соединяется с тимином, а гуанин – с цитозином. С помощью этой модели можно было проследить репликацию самой молекулы ДНК. По Уотсону и Крику, две части молекулы ДНК отделяются друг от друга в местах водородных связей, что очень похоже на расстегивание застежки-молнии. Из каждой половины прежней молекулы синтезируется новая молекула ДНК. Последовательность оснований функционирует как матрица, или образец, для образования новых молекул ДНК. Открытие химической структуры ДНК было оценено во всем мире как одно из наиболее выдающихся биологических открытий века.
После опубликования описания модели в английском журнале «Нейче» («Nature») в апреле 1953 г. тандем Крика и Уотсона распался. Через год с небольшим Уотсон был назначен старшим научным сотрудником кафедры биологии Калифорнийского технологического института в Пасадене (штат Калифорния). В 1955 г., когда он работал ассистентом профессора биологии в Гарвардском университете Кембриджа (штат Массачусетс), судьба вновь свела его с Криком, с которым он проводил совместные исследования до 1956 г. В 1958 г. Уотсон был назначен адъюнкт-профессором, а в 1961 г. – полным профессором.
Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине 1962 г. «за открытия в области молекулярной структуры нуклеиновых кислот и за определение их роли для передачи информации в живой материи». В речи презентации А. В. Энгстрём из Каролинского института охарактеризовал ДНК как «полимер, составленный из строительных блоков нескольких типов – моносахарида, фосфата и азотистых оснований». «Моносахарид и фосфат – повторяющиеся элементы гигантской молекулы ДНК, – сказал далее Энгстрём, – кроме того, она содержит четыре типа азотистых оснований. Открытием является порядок пространственного соединения этих строительных блоков». Энгстрём добавил, что определение структуры ДНК «открывает самые неожиданные возможности для разгадки механизма контроля и переноса генетической информации».
С 1968 г. Уотсон – директор лаборатории молекулярной биологии в Колд-Спринг-Харборе (Лонг-Исланд). Отказавшись от должности в Гарварде в 1976 г., он посвятил себя руководству исследованиями в лаборатории Колд-Спринг-Харбор. Значительное место в его работе заняли нейробиология и изучение роли вирусов и ДНК в развитии рака.
В 1968 г. Уотсон женился на Элизабет Леви, ранее работавшей ассистентом в лаборатории. У них родились два сына; семья живет в построенном в XIX в. доме на территории университетского городка. Уотсон – автор «Молекулярной биологии гена» («The Molecular Biology of Gene», 1965), одного из наиболее известных и популярных учебников по молекулярной биологии.
Среди многочисленных премий и наград Уотсона – премия Альберта Ласкера Американского национального общества здоровья (1960), медаль Джона Д. Карти Национальной академии наук (1971) и президентская медаль Свободы (1977). Он член Национальной академии наук, Американского общества биохимиков, Американской ассоциации исследований рака, Американского философского общества и Датской академии наук и искусств, а также член совета студентов Гарвардского университета. Он был удостоен почетных степеней университетов Чикаго, Хофстра, Лонг-Исланда, Брандейса, Гарварда, Нью-Йорка, Рокфеллеровского университета, а также Медицинского колледжа Альберта Эйнштейна.
ФРЕНСИС КРИК & ДЖЕЙМС УОТСОН
Четыре буквы генетического кода перевернули мир ровно 50 лет назад
Начало этой истории можно принять за шутку. "А мы только что открыли секрет жизни!" – сказал один из двоих мужчин, вошедших в кембриджский Игл паб (Eagle pub) ровно 50 лет назад – 28 февраля 1953 года. И эти люди, работавшие в лаборатории неподалеку, нисколько не преувеличивали. Одного из них звали Френсис Крик (Francis Crick), а другого – Джеймс Уотсон (James Watson).
Уотсон и Крик открыли структуру дезоксирибонуклеиновой кислоты (ДНК) – вещества, которое содержит всю наследственную информацию. Через несколько месяцев после исторического заявления в пабе вышла осторожная публикация работы двух исследователей в журнале Nature (Watson J.D., Crick F.H.C. Molecular structure of nucleic acids // Nature. 1953. V. 171. P. 738-740). Статья заканчивалась предположением о том, что открытие структуры ДНК может объяснить механизмы копирования генетического материала.
К пятидесятым годам было известно, что ДНК – большая молекула, которая состоит из тысяч соединенных между собой в линию маленьких молекул четырех разных видов – нуклеотидов. Также ученые знали, что именно ДНК отвечает за хранение и передачу по наследству генетической информации, похожей на текст, написанный алфавитом из четырех букв. Неизвестными оставались пространственная структура этой молекулы и механизмы, по которым ДНК передается по наследству от клетки к клетке и от организма к организму.
В 1948 году Лайнус Полинг (Linus Pauling) открыл пространственную структуру других макромолекул – белков. Прикованный нефритом к постели Полинг несколько часов складывал бумагу, которой он пытался смоделировать конфигурацию белковой молекулы, и создал модель структуры, названной "альфа-спиралью".
По словам Уотсона, после этого открытия в их лаборатории была популярна гипотеза о спиральном строении ДНК. Уотсон и Крик сотрудничали с ведущими специалистами по рентгеноструктурному анализу, а Крик умел практически безошибочно обнаруживать признаки спирали на снимках, полученных таким способом.
Полинг тоже считал, что ДНК – спираль, причем, состоящая из трех нитей. Однако, он не мог объяснить ни природы такой структуры, ни механизмы самоудвоения ДНК для передачи дочерним клеткам.
Открытие двуспиральной структуры произошло после того, как Морис Уилкинс (Maurice Wilkins) тайно показал Уотсону и Крику рентгеновский снимок молекулы ДНК, сделанный его сотрудницей Розалинд Франклин (Rosalind Franklin). На этом снимке они четко узнали признаки спирали и направились в лабораторию, чтобы проверить все на объемной модели.
В лаборатории выяснилось, что мастерская не поставила необходимые для стереомодели металлические пластины, и Уотсон вырезал из картона четыре вида макетов нуклеотидов – гуанина (G), цитозина (C), тимина (T) и аденина (A) – и стал раскладывать их на столе. И тут он обнаружил, что аденин соединяется с тимином, а гуанин – с цитозином по принципу "ключ-замок". Именно таким образом соединяются между собой две нити спирали ДНК, то есть напротив тимина из одной нити всегда будет находиться аденин из другой, и ничто иное.
Такое расположение позволило объяснить механизмы копирования ДНК: две нити спирали расходятся, и к каждой из них достраивается из нуклеотидов точная копия ее бывшей "партнерши" по спирали. По такому же принципу, как с негатива в фотографии печатают позитив.
Очень печально сложилась судьба Розалинд Франклин. Уилкинс называл свою подчиненную исключительно "синим чулком" и находился с ней в постоянном конфликте. Хоть Франклин и не поддерживала гипотезу о спиральном строении ДНК, именно ее снимки сыграли решающую роль в открытии Уотсона и Крика. И, может, Полинг удостоился бы четвертой Нобелевской премии, если бы он смог увидеть эти снимки раньше, чем британские исследователи.
До премии, которую получили Уилкинс, Уотсон и Крик, Розалинд не дожила. Она скончалась от рака в 1958 году.
Очевидно, что открытие пространственной структуры ДНК совершило революцию в мире науки и повлекло за собой целый ряд новых открытий, без которых нельзя представить не только современную науку, но и современную жизнь в целом
В шестидесятых годах прошлого века предположение Уотсона и Крика о механизме репликации (удвоения) ДНК полностью подтвердилось. Кроме того, было показано, что в этом процессе принимает участие специальный белок – ДНК-полимераза.
Примерно в то же время было совершено другое важное открытие – генетический код. Как уже говорилось выше, ДНК содержит в себе информацию обо всем, что передается по наследству, в том числе о линейной структуре каждого белка в организме. Белки, как и ДНК, представляют длинные молекулярные цепочки из аминокислот. Этих аминокислот 20. Соответственно, было неясно каким образом "язык" ДНК, состоящий из четырехбуквенного алфавита переводятся на "язык" белков, где используется 20 "букв".
Оказалось, что сочетание из трех нуклеотидов ДНК четко соответствует одной из 20 аминокислот. И, таким образом "написанное" на ДНК однозначно переводится в белок.
В семидесятых годах появились еще два важнейших метода, основанные на открытии Уотсона и Крика. Это секвенирование и получение рекомбинатной ДНК. Секвенирование позволяет "прочитать" последовательность нуклеотидов в ДНК. Именно на этом методе основана вся программа "Геном человека".
Получение рекомбинантной ДНК по другому называют молекулярным клонированием. Суть этого метода заключается в том, что в молекулу ДНК встраивают фрагмент, содержащий определенный ген. Таким образом, например получают бактерии, которые содержат ген человеческого инсулина. Инсулин, полученный таким способом, называется рекомбинатным. Этим же методом созданы все "генетически модифицированные продукты".
Как ни парадоксально, репродуктивное клонирование, о котором сейчас все говорят, появилось раньше, чем была открыта структура ДНК. Понятно, что сейчас учеными, проводящие такие эксперименты, активно используются результаты открытия Уотсона и Крика. Но, изначально, метод не базировался на нем.
Следующим важным шагом науки стала разработка в восьмидесятых годах полимеразно-цепной реакции. Эта технология используется для быстрого "размножения" нужного фрагмента ДНК и уже нашла множество применений как в науке, так в медицине и технологии. В медицине с помощью ПЦР проводят быструю и точную диагностику вирусных заболеваний. Если в массе ДНК, полученной из анализа пациента, даже в минимальном количестве есть гены, принесенные вирусом, то с помощью ПЦР можно добиться их "размножения" и после этого легко идентифицировать.
Кроме того, что открытие Уотсона и Крика стало основой множества научных исследований, включая знаменитый проект "Геном человека", молекула ДНК оставила след в современной живописи, кинематографе, архитектуре.
Л.В. ЯКОВЕНКО,
И.Э. ЛАЛАЯНЦ
Двойной спирали ДНК 50 лет!
В субботу 28 февраля 1953 г. двое молодых ученых, Дж.Уотсон и Ф.Крик, в небольшой закусочной Eagle в Кембридже объявили толпе пришедших на ленч людей, что они открыли секрет жизни. Много лет спустя Одиль, жена Ф.Крика, сказала, что она, конечно, не поверила ему: приходя домой, он часто заявлял что-нибудь в этом роде, но потом оказывалось, что это ошибка. На этот раз ошибки не было, и с этого заявления началась революция в биологии, которая продолжается и по сей день.
25 апреля 1953 г. в журнале Nature появились сразу три статьи по структуре нуклеиновых кислот. В одной из них, написанной Дж.Уотсоном и Ф.Криком, была предложена структура молекулы ДНК в виде двойной спирали. В двух других, написанных М.Вилкинсом, А.Стоксом, Г.Вилсоном, Р.Франклин и Р.Гослингом, были приведены экспериментальные данные, подтверждающие спиральную структуру молекул ДНК. История открытия двойной спирали ДНК напоминает приключенческий роман и заслуживает хотя бы краткого изложения.