Отечественные САПР ТП
СОВРЕМЕННЫЕ САПР ТП И ИХ СОВЕРШЕНСТВОВАНИЕ
Современное машиностроительное производство испытывает постоянно возрастающую потребность в полноценных высокоэффективных САПР ТП различного назначения.
До начала 90-х гг. XX в. в отечественном машиностроении, за редким исключением, применялись САПР ТП отечественной разработки. Многие предприятия и, прежде всего оборонно-промышленного комплекса создавали, эксплуатировали и тиражировали собственные системы. Наряду с эффективно работавшими САПР ТП существовало значительное число систем, не отвечавших предъявляемым к подобным системам требованиям, имевших весьма ограниченные области применения, малую надежность и т.д. Необходимость работы с такими системами часто вызывала у технологов-проектировщиков негативное отношение к самой идее автоматизации проектирования ТП.
В конце XX в. политика предприятий в области САПР ТП серьезно изменилась. Предприятия перестали разрабатывать собственные системы и начали покупать лицензионные САПР ТП необходимой конфигурации и функционального назначения. Число отечественных разработчиков САПР ТП резко сократилось. На рынок стали поступать зарубежные системы. Однако, если адаптация САПР К зарубежной разработки к отечественным условиям применения и ее «русификация» проходят сравнительно просто, то аналогичные действия с САПР ТП часто вызывают серьезные затруднения. Прежде всего, сказываются различия в нормативных базах (отечественные стандарты не совпадают с зарубежными). Не совпадают марки используемых материалов, разнятся методики определения их характеристик. Не совпадает общая методология проектирования ТП, подходы к определению режимов обработки, оценки возможных сил резания и т. д. Все это накладывает серьезные ограничения на конкурентоспособность САПР ТП зарубежной разработки на отечественном рынке.
Рыночной «нишей» САПР зарубежного производства на отечественном рынке можно считать САПР К и САП. Создание САПР маршрутной и операционной технологий для использования на отечественных предприятиях следует считать прерогативой отечественных разработчиков. На некоторых отечественных предприятиях уже начали применять «связки» САПР зарубежной и отечественной разработки: автоматизированное конструирование изделия и его элементов выполняют с помощью зарубежной САПР, а технологическую подготовку — с помощью отечественной САПР ТП. При интеграции систем становятся первоочередными проблемы совместимости форматов экспортируемых (импортируемых) данных.
Рассмотрим реализации некоторых отечественных САПР ТП, находящих применение в промышленности.
КОМПАС-Автопроект. Разработчик — компания АСКОН. Комплекс КОМПАС-Автопроект ориентирован на использование в интегрированных системах автоматизированной поддержки ЖЦИ на базе CALS-технологий, как средство автоматизации ТПП.
КОМПАС-Автопроект начиная с версии 9.3 является сервером автоматизации, предоставляющим клиентским приложениям для использования свыше 300 различных методов и сервисных программ.
Внешние приложения, работающие с КОМПАС-Автопроект, могут:
• реагировать на события, происходящие на сервере: открытие и закрытие баз данных, смена подсистем, таблиц, изменение данных, завершение приложения и др.;
• получать данные о текущем состоянии системы: содержание активной таблицы, последний выполненный SQL-запрос, конфигурационные настройки, имя пользователя, его ранг и т.д.;
• управлять системой: загружать требуемые базы данных, автоматически перемещаться по таблицам, копировать информацию из справочников, выделять блоки записей, производить их удаление или вставку и т. д.
Открытая архитектура системы позволяет предприятиям самостоятельно разрабатывать новые программные модули, встраивать их в программный комплекс. Использование возможностей сервера автоматизации КОМПАС-Автопроект облегчает разработку приложений, практически снимает ограничения по адаптации системы под специальные требования заказчиков и обеспечивает решение разнообразных задач ТПП, включая возможности интеграции с уже работающими на предприятии системами ERP/MRP/PLM.
Основным техническим средством рабочего места системы является персональный компьютер стандартной конфигурации с операционной системой Windows.
Реализованные технологические модули обеспечивают:
• расчет норм расхода материала;
• расчет режимов резания;
• определение режимов сварки;
• нормирование затрат труда;
• оформление технологической документации на разработанный ТП;
• поиск ТП в архиве.
При автоматизированном расчете норм расхода материала учитывают нормативы технологических потерь, отходы вследствие некратности размеров исходного материала и т. д. В зависимости от вида и профиля заготовки предусмотрены различные методы расчета, например, расчет норм расхода листового материала при индивидуальном раскрое и т.д. Возможна настройка системы на алгоритмы нормирования материала, действующие на предприятии. Для оптимального раскроя листового материала предусмотрена входящая в состав программного комплекса САПР Интех-Раскрой W/L.
Подсистема расчета режимов резания для методов механической обработки позволяет определять основное и вспомогательное время соответствующего технологического перехода. Учитывают тип и геометрию обрабатываемого конструктивного элемента, физико-механические свойства материала и состояние поверхностного слоя заготовки, жесткость технологической системы, паспортные данные станка, параметры режущего инструмента и т.д. Вспомогательное время на основной переход определяют по общемашиностроительным нормативам. Возможна настройка на различные алгоритмы расчета, в том числе с использованием методик, принятых на предприятии.
При определении режимов для различных способов сварки выполняют выбор необходимых сварочных материалов (электродов, сварочной проволоки, защитных газов) и норм их расхода. Учитывают конструктивные элементы сварных швов по действующим стандартам, положение шва в пространстве и используемое оборудование.
Предусмотрено нормирование операций по укрупненным типовым нормам, а также нормирование отдельных технологических переходов. Нормирование по укрупненным типовым нормам применяют в единичном и мелкосерийном производствах. Подробное нормирование по каждому переходу — в крупносерийном и массовом. При нормировании учитывают время на установку заготовки, на контрольные измерения, а также необходимое подготовительно-заключительное время. При определении штучно-калькуляционного времени учитывают тип производства, а также все основные составляющие штучного времени.
Возможно оформление различных технологических документов:
• ведомостей для своевременного обеспечения производства материалами, оснасткой или расчета себестоимости изготовления заказа;
• карт (например, операционных).
Программа оформления технологических документов использует специальную пошаговую среду набора и настройки их параметров. Возможно формирование документов в среде MS Ехсе1, их вставка в карты эскизов из CAD-систем, добавление в карты любых текстовых документов, в том числе и подготовленных в редакторе Microsoft Word.
Поиск ТП в архиве выполняют по содержанию технологических операций и переходов. Пользователь может вести поиск ТП по используемому оборудованию, режущему инструменту, средствам измерения и т.д. Технологические решения, реализованные в найденном ТП, можно использовать в дальнейшем, как решения-аналоги.
КОМПАС-Автопроект комплектуется по модульному принципу. Это позволяет организовать рабочие места технологов для различных видов производства, а также рабочие места специалистов по расцеховке, материальному и трудовому нормированию. При создании на предприятии единого комплекса автоматизации конструкторско-технологической подготовки хранение информации, созданной в КОМПАС-Автопроект, выполняет система управления ЖЦИ ЛОЦМАН: PLM (или другая PDM/PLM система).
КОМПАС-Автопроект может взаимодействовать с системой трехмерного твердотельного моделирования КОМПАС 3D, выполняющей функцию САПР К, к тому же дополняемой системой прочностного анализа. Последнюю используют для обоснованного выбора материала детали из встроенного справочника, содержащего информацию более чем о 500 металлических и таком же числе неметаллических материалов.
Комплекс КОМПАС-Автопроект 9.4 клиент-серверная версия состоит из двух подсистем КОМПАС-Автопроект-Технология и КОМПАС-Автопроект-Спецификации.
Подсистема КОМПАС-Автопроект-Технология обеспечивает:
• автоматизированное проектирование ТП основных видов производств;
• автоматическое формирование стандартного комплекса технологической документации и документов произвольной формы формате MS Excel;
• оперативный просмотр графики: чертежей деталей, инструментов, операционных эскизов, карт наладок и т.д.;
• интеграцию с системами ЛОЦМАН: PLM, PartY Plus, Team-Center, Baan;
• расчет режимов резания;
• трудовое нормирование технологических операций;
• возможность настройки образцов технологических документов;
• перевод технологий на иностранные языки;
• возможность разработки пользователем подсистем проектирования технологий для различных видов производств;
• автоматизированное формирование кода детали в соответствии
с ЕСКД и ТКД;
• выполнение расчетных процедур.
Автоматизированное проектирование ТП выполняют в следующих режимах:
• на основе ТП-аналога с автоматическим выбором соответствующей технологии из архива по различным критериям, в том числе и по конструкторско-технологическому коду детали;
• с использованием типового ТП;
• с использованием библиотеки типовых технологических операций и переходов;
• автоматическая доработка типовой технологии на основе данных, переданных с параметризованного чертежа или эскиза КОМПАС;
• автоматическая доработка типовой технологии на основе расчетных данных или таблицы типоразмеров изготавливаемых деталей.
Продукты КОМПАС успешно интегрируются с зарубежными САПР. При автоматизации проектирования изделий и их элементов на некоторых предприятиях используют «связку» Unigraphics-KOM-ПАС 3D. При автоматизации ТПП применяют «связку» КОМПАС-Автопроект-Cimatron (подготовка управляющих программ для оборудования с ЧПУ).
T-FLEX (интегрированный комплекс программ). Разработчик — компания «Топ Системы» включает:
САПР К (CAD-систему) T-FLEX CAD;
САП (САМ-систему) T-FLEX ЧПУ;
систему автоматизации инженерных расчетов (САЕ-систему) T-FLEX/Euler;
САПР ТП (САРР-систему) T-FLEX/ТехноПро;
PDM-систему T-FLEX DOCs.
Комплекс ориентирован на использование в качестве основы (ядра) интегрированной системы автоматизированной поддержки и управления ЖЦИ и реализуется на персональных компьютерах стандартных конфигураций с операционной системой Windows.
Каждый компонент комплекса может использоваться автономно, иметь современный интерфейс. В набор выполняемых функций входят все стандартные операции, производимые системами среднего уровня.
Одной из основных идей, заложенных в программные продукты T-Flex, является идея параметризации — стремление получить конкретный объект проектирования, например, модель конкретной детали, путем соответствующего изменения (или задания) необходимых значений параметров имеющейся параметризованной модели объекта.
Компонент САПР К представлен системой плоского (T-FLEX CAD 2D) и трехмерного (T-FLEX CAD 3D) моделирования среднего уровня. Система плоского моделирования позволяет создавать параметрические модели деталей неограниченной сложности. Tpeхмерное твердотельное моделирование базируется на использовании ядра Parasolid фирмы EDS.
После создании чертежа или трехмерной модели в T-FLEX САЕ данные о ее геометрии, размерах и технических условиях мог быть переданы в полуавтоматическом или автоматическом режиме в систему T-FLEX/ТехноПро, где будет получен комплект документов в соответствии с ЕСТД.
Разработчики комплекса считают, что параметрические изменения исходных конструкторских моделей деталей приведут к необходимым автоматическим изменениям в технологической документации. Аналогичная ситуация прослеживается и на примере связки T-FLEX CAD-T-FLEX ЧПУ: благодаря полной интеграции этих систем технологу становятся доступны все параметрические инструменты конструктора. При изменении чертежа или трехмерной модели изменяется управляющая программа, которая по отдельной команде может быть сохранена в PDM-системе.
В САПР ТП T-FLEX/ТехноПро используют параметрическое технологическое проектирование. В базе данных системы хранят параметрические ТП, соответствующие параметрическим моделям изделий в интегрированной с ней САПР К. Процесс проектирования сводят к адаптации параметрической модели ТП, играющей роль ТП-аналога, к конструктивно-технологическим характеристикам конкретной детали, корректировке полученного единичного ТП и его редактированию. Последние действия обязательны, так как количественные изменения параметров модели детали могут привести к качественным изменениям технологических решений. Для спроектированного процесса формируют новый комплект технологических документов, который в виде объектов T-FLEX DOCs сохраняют в базе PDM-системы.
Входящие в комплекс T-FLEX системы подготовки программ для станков с ЧПУ - системы T-FLEX ЧПУ 20 и T-FLEX ЧПУ 30 - позволяют создавать управляющие программы практически для всех существующих сегодня видов обработки: электроэрозионной, лазерной, токарной, сверлильной, фрезерной (2 — 5-координатной) и гравировки. Архитектурно эти системы встроены в конструкторскую систему T-FLEX CAD, т.е. имеют общий интерфейс моделирования и общее параметрическое ядро. Это позволяет создавать программы ЧПУ, ассоциативно связанные с конструкторской геометрией 2D- и ЗD-моделей. При изменении геометрии деталей по определенным параметрам происходит автоматизированное изменение управляющих программ для их обработки.
Используя ассоциативно связанные модели деталей и программ ЧПУ, специалисты могут применять на предприятиях типовые решения путем заимствования проектов в базе знаний T-FLEX DOCs с последующим изменением параметров в T-FLEX CAD и с получением управляющих программ в T-FLEX ЧПУ.
Созданные управляющие программы сохраняют в T-FLEX DOCs, где для их просмотра (имитации обработки с учетом съема материала) может использоваться ряд модулей, входящих в блок САМ-систем комплекса T-FLEX-T-FLEX NC Tracer. Имитация осуществляется для фрезерной (2 —5-координатной), токарной и сверлильной обработок.
Цикл подготовки и отработки управляющей программы включает в себя:
• моделирование изготавливаемой детали — CAD/CAM-система, построение траектории с использованием линейной аппроксимации;
• трансформация — пересчет координат траектории с учетом вылета инструмента, габаритов оснастки;
• постпроцессор — пересчет координат траектории с учетом кинематики станка;
• стойка ЧПУ — интерполяция координат в управляющей программе.
Применение единого математического обеспечения для ТПП и управления станками с ЧПУ позволяет минимизировать погрешности математических преобразований, накапливающиеся в управляющей программе. Библиотека постпроцессоров ориентирована на широкий спектр систем ЧПУ, применяющихся в промышленности.
Система T-FLEX /Технология, по замыслу разработчиков, позволяет осуществить параллельную работу конструкторских и технологических подразделений предприятия. Конструктор создает чертежи изделия в T-FLEX CAD, затем эти чертежи поступают к технологу, который связывает параметры конструкции с исходными данными для формирования технологических операций, вносит недостающую технологическую информацию (сведения об элементах конструкции). Таким образом, исходные данные система считывает с конструкторского чертежа и далее использует для расчета параметров ТП изготовления изделия. Любые изменения размеров, допусков, шероховатостей или других обозначений на чертеже приведут к перерасчету параметров переходов. Совместное использование данных систем также позволяет избежать двойного ввода информации и избежать ошибок, связанных с «человеческим фактором».
Разработаны локальная и коллективная (работающая в среде T-FLEX DOCs) версии системы, при этом использована мощная промышленная СУБД MS SQL Server.
Система создана как средство, не подменяющее технолога, но существенно ускоряющее и упрощающее проектирование технологии, расчет режимов обработки, норм и технологических размерных цепей, формирование текстов переходов, выбор необходимой технологической оснастки, формирование документации и операционных эскизов.
T-FLEX/Технология обеспечивает автоматизированную разработку маршрутной, маршрутно-операционной и операционной технологий, включая следующие операции: заготовительные, механической и термической обработки, нанесения покрытий, слесарные, сборки и др. Диалоговый режим обеспечивает формирование ТП путем выбора необходимых операций, переходов и оснасткой из справочников системы, причем создаваемые таким образом ТПмогут служить основой для их использования в дальнейшем в качестве ТП-аналогов. Используя диалоговые средства системы, можно добавлять или изменять операции, переходы, их последовательность и технологическое оснащение в них.
Выбор технологического оснащения производится из информационной базы системы. В ней содержатся данные о наименованиях операций, оборудовании, приспособлениях, вспомогательных материалах, режущих, измерительных и вспомогательных инструментах, заготовках, комплектующих для сборочных ТП и др. К каждому типу технологического оснащения в информационной базе можно добавлять параметры, признаки классификации и иллюстрации. Ускоренный подбор оснащения позволяет управлять каждым последующим этапом подбора в зависимости от выбора на предыдущем этапе.
Средства проектирования дополнены базами данных, содержащими расчеты режимов обработки, трудоемкости, межоперационных размеров и расхода материалов. Базы данных открыты для изменения и добавления методик, расчетных алгоритмов и табличных данных.
Technologi CS. Разработчик — компания Consistent Software. Комплекс, объединяющий программные продукты Mechani CS и Technologi CS, может рассматриваться как интегрированная САПР, формирующая единую систему технической подготовки производства и общую базу конструкторско-технологической информации.
Система Mechani CS обеспечивает:
• формирование чертежей и спецификаций по ЕСКД, конструкторской информации в единой системе ТПП;
• автоматизацию нормоконтроля.
Система Technologi CS обеспечивает:
• автоматизированное проектирование ТП;
• материальное и трудовое нормирование;
• выполнение автоматизированных расчетов на узел, изделие, производственную программу:
• определение потребности в материалах, стандартных изделиях, комплектующих, инструменте и т.д.;
• определение сводной трудоемкости;
• оценку загрузки оборудования;
• расчет длительности производственного цикла.
Каждая из систем может использоваться автономно и реализоваться на базе персональных компьютеров стандартной конфигурации в операционной системе Windows.
Система Technologi CS наряду с автоматизацией проектирования ТП позволяет формировать необходимую информацию для планирования, диспетчеризации и управления производством.
Проектирование ТП в системе выполняют на основе процессов-аналогов. Разработчики системы при ее создании исходили из следующих основных принципов:
• технолог не должен многократно описывать ТП (т. е. единожды разработав типовой или групповой ТП, он должен использовать его при работе с единичным);
• документация (в том числе ведомости деталей, включающие перечень операций по типовому ТП и их индивидуальные особенности) должна формироваться автоматически;
• система должна хранить в единичном ТП связи операций, выполняемых по типовому (групповому ТП), с процессом-аналогом, чтобы обеспечить в нем необходимые изменения;
• технолог, работая со сквозным единичным ТП, должен иметь информацию о том, какие операции этого ТП принадлежат различным типовым и групповым процессам.
Для разработки и хранения процессов-аналогов в системе предназначен отдельный справочник.
Процесс-аналог (например, типовой ТП), содержит исчерпывающий перечень технологических операций, характерных для всех деталей, изготавливаемых на его основе. Для каждой операции могут указываться оборудование, переходы, инструмент, вспомогательные материалы и режимы, являющиеся общими для всей совокупности деталей, изготавливаемых по данному ТП.
Перенос информации о типовом ТП при проектировании на его основе единичных ТП проводят, используя параметры двух типов:
• технологический передел (вид обработки);
• уникальный номер операции в типовом ТП.
Параметр «Технологический передел» — ссылочного типа: он ссылается на специально заведенный справочник переделов. Такой параметр должен иметь каждый элемент типового (группового) ТП, поскольку именно он служит тем самым признаком, который в единичных ТП отличает элементы типового ТП от остальных. Каждому технологическому переделу соответствует собственный вид комплекта документации.
Параметр «Уникальный номер операции в типовом ТП» необходим для автоматического формирования перечня операций для деталей в ведомостях (используется для групповых ТП): он подключается только к операциям ТП.
Детали, обрабатываемые по типовому ТП, группируют в виде спецификации к соответствующему элементу номенклатуры (в данном случае — к элементу справочника ТП). Для создания спецификации технологу предоставляются средства поиска, группировки и сортировки деталей по различным признакам, например, по типу покрытия.
Структуру единичного ТП определяет технолог. Используя типовые ТП, он помещает в нужные (по его мнению) места фрагменты процесса-аналога или даже процесс целиком, например, процесс нанесения гальванического покрытия. Включение фрагментов типового ТП в единичный проводят методом копирования и вставки: Выделить все/ Копировать/ Вставить. После завершения проектирования единичного ТП необходимая технологическая документация формируется автоматически.
Информация о единичных ТП хранится в соответствующей базе данных и может быть использована для формирования производственных планов и пооперационного учета их выполнения.
ТехноПро (комплекс технологического проектирования и подготовки производства). Разработчик — корпорация «Вектор-Альянс».
Комплекс ориентирован на использование в качестве технологического ядра системы автоматизированной поддержки ЖЦИ на базе CALS-технологий.
Предусмотрена поставка комплекса в трех версиях:
• ТехноПро Базовая — базовая версия для работы на локальных рабочих местах или в сетях для нескольких пользователей;
• ТехноПро Стандартная — клиент-серверная стандартная версия для работы в больших сетях с сотнями пользователей и единой SQL-базой;
• ТехноПро Основная — клиент-серверная версия с максимальными возможностями, содержит уникальные средства автоматического проектирования и создана для работы в больших сетях с сотнями пользователей и единой SQL-базой.
Здесь под SQL-базой понимают базу данных с промышленной СУБД MS SQL Server для хранения больших объемов информации.
Являясь минимальным компонентом комплекса, система ТехноПро Базовая содержит все средства, необходимые для проектирования ТП.
ТехноПро Базовая обеспечивает поддержку проектирования операционной технологии, включая заготовительные операции, операции механической и термической обработки, нанесения покрытий, слесарные операции, операции технического контроля, сборки, штамповки, сварки и др. Система формирует операционные, маршрутно-операционные и маршрутные технологические карты, ведомости оснастки, карты контроля, материалов и комплектующих, титульные листы и прочие технологические документы.
Пользователь сам определяет структуру единичного маршрутного ТП, применяя диалоговое редактирование или ТП-аналог. Широко использована конструкторско-технологическая параметризация. Параметрические ТП, названные разработчиками комплекса общими технологическими процессами (ОТП), содержат описание технологии изготовления групп, деталей без указания конкретных размеров или исполнений.
При использовании на предприятии типовых или групповых ТП ТехноПро Базовая обеспечивает возможность их параметризации. Такие параметрические ТП могут автоматически пересчитываться, причем информацию для пересчета (описание конструкции) можно получить из конструкторских САПР или вести вручную с чертежа, выполненного на бумаге.
Информационное обеспечение комплекса ТехноПро включает пять взаимосвязанных баз данных: изделий и спецификаций, конкретных (единичных) ТП (КТП), ОТП, информационной базы (ИБ), базы условий и расчетов (БУР).
Общие технологические процессы используют для параметрического проектирования, как исходный ТП-аналог, единичных, типовых и групповых ТП. В случае проектирования групповых ТП достаточно ввести в систему список деталей, для которых будет формироваться ТП, и варианты размеров или других параметров из таблицы группового чертежа.
В сформированном ТП и в операционных картах система ТехноПро автоматически создает таблицы с указанием перечня деталей и соответствующих значений технологических (выполняемых) и чертежных значений размеров или иных параметров обрабатываемых элементов. Групповые ТП могут быть спроектированы в системе ТехноПро для любых видов производства: литья, штамповки, механообработки, гальванопокрытия, окраски, термообработки и др. После формирования ТП пользователь просматривает и редактирует его в диалоговом режиме.
Интеграция ТехноПро с САПР К создает основу для одновременного (параллельного) выполнения конструкторского и технологического проектирования. Комплекс обладает интерфейсами с системами T-FLEX CAD, SolidWorks, Pro/ENGINEER, Unigraphics и др.
Для использования комплекса в интегрированных системах автоматизированной поддержки ЖЦИ предусмотрены разные варианты его взаимодействия с системами PDM и ERP. При формировании такой системы для расширения возможностей PDM или ERP в части управления технологическими данными разработаны подсистемы:
• ТехноПро/Производство — сбор любых сводных данных по спроектированным ТП и формирование документов в MS Excel;
• ТехноПро/Симас — формирование материальных спецификаций для расчета потребностей в заготовках и комплектующих;
• ТехноПро/Материалы — справочник (база данных) по материалам, сортаментам и комплектующим;
• ТехноПро/Планирование — планирование работ и ресурсов.
Интерфейс ТехноКад реализует считывание данных для технологического проектирования с электронных моделей и чертежей, выполненных в CAD/САМ -системах: SoildWorks, Pro/ENGINEER, Unigraphics, Solid Edge, CATIA, Inventor, AutoCAD, T-FLEX CAD; и др.
Интерфейс ТехноКом осуществляет обмен и синхронизацию данных. Этот интерфейс настраивается «под ключ», с учетом конфигурации систем PDM и ERP на конкретном предприятии. Такой подход позволяет организовать комплексы, включающие ТехноПро и следующие системы:
• PDM — SmarTeam, Windchill, Teamcenter, Party PLUS, PDM Step Suite, T-FLEX Docs;
• ERP — Baan, SyteLine, OneWorld, Sap R/3, Scala, Mfg/Pro, Axapta, Navision, Галактика, Омега, Бэст-Про, 1С;
• другие системы, в том числе разработанные силами предприятий заказчика.
ADEM (интегрированная CAPP/CAD/CAM система). Российский разработчик — компания Omega ADEM Technologies Ltd.
Интегрированная система ADEM, вышедшая на отечественный и зарубежный рынки в середине 90-х гг. XX в., появилась в результате научных исследований, проведенных совместно специалистами России, Израиля и Германии. Задача этих исследований состояла в определении параметров программного комплекса для автоматизации основного объема проектно-конструкторско-технологических работ для предприятий машиностроительного профиля.
Комплекс ADEM состоит из нескольких модулей:
• ADEM САРР — система проектирования ТП, которая позволяет с различной степенью автоматизации разрабатывать единичные, групповые и типовые ТП по многим направлениям (механообработка, гальваника, сварка, сборка, термообработка и т.д.);
• ADEM CAD — инструмент конструктора, который объединяет известные методы геометрического 2D и 3D (твердотельного и поверхностного) моделирования;
• ADEM САМ — подготовка управляющих программ для станков с ЧПУ;
• ADEM Vault — электронный архив технических документов позволяющий объединить в одном информационном пространств работу конструкторов, технологов и других участников конструкторско-технологической подготовки производства;
• ADEM TDM — инструментальная среда, предназначенная для разработки пользовательских приложений.
В системе ADEM САРР сделана попытка повышения эффективности технологического проектирования за счет:
• дружественного пользовательского интерфейса (представление ТП в виде дерева, контекстно-зависимое меню и др.);
• интеграции с другими модулями системы;
• использования эффективных методов и способов модификации структуры и состава ТП;
• возможности сохранения частей ТП (операций, переходов и пр.) с целью дальнейшего их использования;
• возможности использования общей для предприятия нормативно-справочной информации, актуальной в любой момент проектирования.
Входную информацию о детали, для которой проектируют ТП (обозначение, наименование, сведения о материале и др.) или импортируют из CAD-системы, либо вручную вводят с клавиатуры. Предусмотрен выбор информации из справочников базы данных системы.
Последовательность операций (маршрутный ТП) определяет пользователь-технолог. Наименования операций и оборудование выбирают из соответствующих справочников. С каждой операцией может быть связан операционный эскиз или карта наладки. Чертеж или эскиз может быть подготовлен как в системе ADEM, так и импортирован из других систем. Для этого ADEM содержит ряд встроенных конверторов (DXF/DWG, SAT, IGES, STEP и др.). Предусмотрена возможность проектирования ТП на основе типовых ТП-аналогов, путем модификации структуры и параметров последних их редактированием.
Переходы, образующие операции, условно разбиты на три группы: установочные, основные и технического контроля. Основные переходы соответствуют конкретной выбранной операции. При формировании текста перехода технолог может использовать чертеж (скалывание размеров и другой различной текстовой информации). На основе заданных или определенных по нормативам режимов резания система рассчитывает основное время на переход.
При выборе технологической оснастки используют базы данных приспособлений, вспомогательного, режущего, слесарного, мерительного (универсального и специального) инструмента.
Вся введенная и полученная в процессе проектирования ТП информация помещается в макеты технологических документов. Макеты создают в модуле ADEM CAD, поэтому для их создания и просмотра дополнительное программное обеспечение не требуется. С системой ADEM стандартно поставляется набор макетов для формирования полного комплекта документации технологического назначения в соответствии с ЕСТД.
Модуль ADEM CAM обеспечивает подготовку управляющих программ для токарных, фрезерных (с управлением по 2,5 — 5 координатам, в том числе и высокоскоростных), электроэрозионных (с управлением по 2—4 координатам) и других станков с широким спектром систем управления.
TECHCARD(комплекс средств автоматизации ТПП). Разработчик — НПП «ИНТЕРМЕХ» (Республика Беларусь). Являясь системным центром компании Autodesk, НПП «ИНТЕРМЕХ» поставляет отечественным предприятиям, кроме указанного комплекса, широкий спектр программных продуктов, в частности:
• SEARCH — система ведения архива технической документации предприятий и управления данными об изделиях;
• CADMECH — многофункциональное приложение для систем трехмерного моделирования;
• ROTATION — система проектирования деталей типа тел вращения;
• LCAD — программный комплекс автоматизации разработки
технологического планирования производственных цехов и участков.
В состав комплекса TECHCARD для организации рабочего места технолога входят:
• САПР ТП изготовления деталей для различных видов производств (механообработка, термообработка, сварка, сборка, гальваника, окраска и т.д.);
• САПР машиностроительных чертежей для построения и оформления операционных эскизов или любых графических изображений, вводимых в технологический документ, работающая в среде AutoCAD;
• система организации и ведения архива конструкторской и технологической документации;
• база данных технологического назначения, включающая в себя нормативы времени на основные и вспомогательные работы; иллюстрированный классификатор оборудования с указанием его характеристик и размещения по цехам и участкам; иллюстрированный классификатор средств технологического оснащения с указанием их характеристик; данные об основных, вспомогательных материалах, видах заготовок и их применяемости; классификатор технологических операций и типовых переходов; справочные данные для определения параметров операционной технологии; библиотеки типовых ТП; рекомендуемые режимы резания.
Проектирование ТП выполняют в диалоговом режиме по ТП-аналогу или с использованием базы данных. Возможна организация параллельного проектирования сквозного ТП несколькими исполнителями по различным видам производства. Подбор оснастки, оборудования, материалов и исполнителей проводят в автоматизированном режиме по алгоритмам, настраиваемым пользователем. Возможна разработка типовых и групповых ТП.
Комплекс позволяет работать на отдельных специализированных АРМ (расцеховщика для создания и редактирования расцеховочных маршрутов; специалистов материального и трудового нормирования; конструктора оснастки; переводчика технологических документов на иностранные языки).
Технологическая документация формируется в полном соответствии с действующими стандартами. Возможно создание любых новых форм документов и ведение архива технологической документации посредством взаимосвязи с системой SEARCH.
Комплекс интегрируется с любой системой управления и планирования, используемой или выбранной на предприятии. Он ориентирован на использование в технологических подразделениях, как крупных предприятий, так и небольших производственных организаций, применяющих АРМ технологов на базе персональных компьютеров и локальных сетей. Работает под управлением промышленных СУБД Oracle/Interbase/MS SQL.
Усложнение конструкций деталей, необходимость использования в процессах формообразования управления по нескольким координатам, резкое усложнение траекторий формообразования, реализующихся на оборудовании с ЧПУ, требуют постоянного совершенствования систем автоматизированной подготовки управляющих программ (САП). На рис. 7.1 показана схема современной подготовки управляющих программ для станков с ЧПУ с использованием средств автоматизации. В той или иной форме данная схема реализуется при применении практически всех САП. Рассмотрим примеры некоторых систем, использующихся в современном отечественном машиностроении.
EdgeCAM.Разработчик — ЗАО «Русская Промышленная компания». Предназначена для автоматизации подготовки управляющих программ токарных, фрезерных, электроэрозионных и других станков с ЧПУ. Реализуется на АРМ технолога-программиста поддержкой 3D моделей деталей.
3D модель детали разрабатывает конструктор, используя программы AutoCAD, CADMECH, Inventor. По окончании разработки конструкторская документация и модель детали поступают архив Search, находящийся на общем сервере организации. При поступлении задания на изготовление данной детали технолог-программист, используя конструкторскую документацию и 3D модель детали, разрабатывает операционную технологию и соответствующую управляющую программу в системе EdgeCAM.
По окончании работы управляющая программа по локальной сети копируется на сервер управления программ. При поступлении заготовки оператор станков с ЧПУ вызывает программу с сервера и после ее проверки и наладки станка приступает к обработке заготовки.
ГеММа-ЗБ(система геометрического моделирования и программирования для станков с ЧПУ). Разработчик — НТЦ ГеММа.
Обеспечивает подготовку управляющих программ для токарных, фрезерных (2-, 3-координатная обработка), электроэрозионных (2-, 4-координатная обработка), гравировальных станков сЧПУ, а также оборудования лазерной плазменной резки и листо-пробивной обработки. Система реализует функции обработки поверхностей по различным стратегиям, что важно для изготовления деталей по моделям, импортированным из других систем. Возможна перманентная коррекция подачи при отработке сложных траекторий с целью оптимизации условий резания и обеспечения высокого качества обработки.
FeMMa-3D работает в едином технологическом комплексе с системой КОМПАС 3D. Модель будущего изделия строится в КОМПАС 3D, а затем передается в систему FeMMa-3D, где создается программа для станков с ЧПУ на изготовление данной модели.
Интерфейс с другими системами реализован через распространенный стандартный формат IGES, который имеется практически во всех российских и зарубежных CAD-системах. Этот формат позволяет передать любую геометрию, построенную в конструкторской системе. Модель, переданная в систему FeMMa-3D, без всяких доработок может служить основой для построения управляющих программ для станка с ЧПУ.
Компьютер с системой ГеММа может подключаться непосредственно к устройству ЧПУ. Система имеет собственный язык макропрограммирования GML (Gemma Macro Language), предназначенный для создания макропроцедур (макросов). С помощью макросов по желанию пользователей могут быть описаны необходимые им процедуры, не вписывающиеся в рамки уже действующей системы, например, циклы движения инструментов, не предусмотренные базовой конфигурацией системы.
Анализ состояния отечественных средств автоматизированной поддержки ЖЦИ машиностроения показывает, что отечественный рынок динамично развивается. Расширяется номенклатура средств автоматизации, постоянно растет их качество, расширяются их функции. Пользователями автоматизированных систем представляется все больше возможностей.
Разработка средств автоматизации носит все более комплексный характер. Все большее число разработчиков создает и выставляет на рынок интегрированные системы CAD/CAM/CAPP, CAD/ CAM/CAPP/PDM и др. Проблема системной интеграции, создание единого информационного пространства поддержки ЖЦИ или даже управления им является одной из актуальных проблем развития современных средств автоматизации. С разрешением этой проблемы связано одно из важнейших направлений совершенствования автоматизированных систем.
Совершенствование систем происходит неравномерно. Наибольших успехов добились разработчики САПР К и САП (CAD-, САМ-, CAD/CAM-систем). На базе мощных ядер геометрического моделирования созданы весьма совершенные системы 2D-, 3D-моделирования (поверхностного и твердотельного). Проблему автоматизации подготовки управляющих программ для станков с ЧПУ следует считать в принципе решенной. Современные САП позволяют разрабатывать управляющие программы для 2 — 5-ко-ординатной обработки с визуализацией траектории относительного движения инструмента и автоматизированным контролем программы.
Вместе с тем уровень CAD-, САМ-, CAD/CAM-систем отечественной разработки пока уступает лучшим зарубежным аналогам. На отечественном рынке программных средств автоматизации зарубежные системы данных классов, несмотря на их относительно высокую стоимость, пока успешно конкурируют с отечественными. Некоторые отечественные системы используют базовое программное обеспечение от зарубежных разработчиков, например, ядра геометрического моделирования. Все это указывает на необходимость проведения постоянной работы по совершенствованию и повышению уровня рассматриваемых систем.
Значительно большее число нерешенных проблем связано с автоматизацией проектирования ТП. Практически все отечественные САПР ТП (САРР-системы) не позволяют на сегодняшний день полноценно автоматизировать разработку маршрутного ТП изготовления детали, не говоря уже о сборке. В современных САШ ТП используют в основном проектирование маршрутных ТП на основе аналогов (типовых, групповых ТП, параметризованных моделей ТП, «общих» ТП для группы деталей). Применяют различные методические подходы: уровневое представление ТП, представление ТП в виде «деревьев» и т.д. Роль технолога-проектировщика остается решающей, так как он формирует маршрутный ТП, основываясь на собственных знаниях, опыте, интуиции, предпочтет (зачастую ошибочных). Проектное решение является субъективным.
Между тем ТП — это, в первую очередь, маршрутный ТП и сопровождающая его дополнительная информация о месте его реализации, используемом оборудовании, ожидаемых трудозатратах. Разработанный ТП является носителем информации, используемой в дальнейшем различными подразделениями предприятия для управления текущим производством, анализа и прогнозирования нового.
По-настоящему творческим является именно формирование маршрутного ТП и определение средств технологического оснащения. Все остальное — производное от этого процесса. Однако именно на этом, важнейшем этапе проектирования существующие САПР ТП практически не оказывают технологу необходимой интеллектуальной поддержки. Все последующие этапы проектирования менее сложны, но связаны со значительным объемом рутинной работы — оформлением технологической документации, составлением различных ведомостей и спецификаций. Эти функции в современных САПР ТП успешно автоматизируют.
Можно утверждать, что подавляющее большинство существующих САПР ТП (как отечественной, так и зарубежной разработки) являются системами автоматизации уровня технологической; операции. Эти системы позволяют поднять производительность труда технолога за счет автоматизации рутинной работы, связанной с процессом проектирования, упорядочения взаимосвязей проектировщиков в процессе работы, предоставления широкого спектра удобных сервисных функций ведения автоматизированных архивов и т.д. Указанные факторы способствуют повышению качества труда технологов, так как упорядочивают их работу и позволяют сосредотачивать больше внимания на принятии эффективных технологических решений.
Однако основной резерв повышения качества проектных технологических решений — формирование их высокоэффективных структур, в настоящее время является неиспользованным при создании САПР ТП.
Сходство и неоригинальность используемых при разработке систем научно-методических подходов делает некоторые САПР ТП, похожими и малоразличимыми по возможностям, что существенно снижает их конкурентоспособность.
Уровень автоматизации ряда областей технологического проектирования, например, разработки ТП сборки с выбором необходимых методов обеспечения ее качества, остается крайне низким. Некоторые системы, претендующие на автоматизацию проектирования процессов сборки, на самом деле предлагают пользователю лишь не совсем удобные текстовые редакторы с не слишком полно разработанными макетами текстов отдельных переходов и операций. Собственно проектирование ТП выполняет человек при минимальной информационно-интеллектуальной поддержке системы.
Причинами подобного состояния автоматизации технологического проектирования являются сложность поставленных проблем автоматизации; неформализуемый на сегодняшнем уровне развития методологии автоматизированного проектирования характер задач; отсутствие эффективных научно-методических подходов к их решению, а иногда и неосведомленность разработчиков о наличии таких подходов; необходимость значительных затрат на решение поставленных проблем и т.д.
Объективный ход развития техники, технологии и средств автоматизации делает решение поставленных проблем автоматизации проектирования исключительно актуальным, что и определяет основные направления совершенствования САПР ТП.