Следственных связей) и порядок следования причинно-следственных событий одинаков во всех инерциальных системах отсчета

Если законы механики справедливы в одной системе координат, то они справедливы и в любой другой системе, движущейся прямолинейно и равномерно относительно первой. Формулировка Галилея

Для предметов, захваченных равномерным движением, это последнее как бы не существует и проявляет своё действие только на вещах, не принимающих в нём участия.

Принцип относительности Галилея.

В середине XYII века Галилео Галилей сформулировал фундаментальный принцип – «принцип относительности».

Он установил, что, даже используя все известные физические законы, невозможно определить, находимся ли мы в состоянии покоя или в состоянии равномерного прямолинейного движения, то есть движения без толчков, остановок или виражей. Самое большее, на что мы способны - это определить состояние только относительного движения двух объектов (поезда и станции, например). Так происходит потому, что законы физики одинаковы при любой скорости движения поезда; более того, мы проносимся вместе со всей Солнечной системой несколько сотен километров в секунду в космическом пространстве, даже не замечая этого.

 

Таким образом, движение и покой – это всегда движение и покой относительно чего-

то, что служит нам системой отсчета. Понятие покоя и движения приобретают смысл только тогда, когда указана точка отсчета (система отсчета)

 

Развитие идей в механике. Всякая система отсчета, в которой свободное материальное тело, то есть тело, не испытывающее воздействия внешних сил, может находиться в состоянии покоя или равномерного прямолинейного движения называется инерциальной.

То есть, инерциальная система отсчета – система отсчета, в которой выполняется закон инерции: тело, на которое не действуют внешние силы, находится в состоянии покоя или равномерного прямолинейного движения.

Если две системы отсчета движутся друг относительно друга равномерно и прямолинейно и если одна из них - инерциальная, то, очевидно, что и вторая будет инерциальной.

 

Принцип относительности Галилея утверждает равноправие инерциальных систем отсчета, которое в механике выражается в том, что:

· законы механики в инерциальных системах отсчета одинаковы. Это значит, что уравнение, описывающее некоторый закон механики, будучи выражено через координаты и время любой другой инерциальной системы отсчета, будет иметь один и тот же вид;

· по результатам механических опытов невозможно установить, покоится ли данная система отсчета или движется равномерно и прямолинейно. В силу этого, ни одна из них не может быть выделена как преимущественная, скорости движения которой мог бы быть придан абсолютный смысл. Физический смысл имеет лишь понятие относительной скорости движения систем, так что любую систему можно признать условно неподвижной, а другую - движущейся относительно нее с определенной скоростью;

· уравнения механики (законы) инвариантны* (неизменны) по отношению к преобразованиям координат при переходе от одной инерциальной системы отсчета к другой. То есть одно и то же явление можно описать в двух разных системах отсчета внешне по-разному, но физическая природа явления остается при этом неизменной.

 

Главным в классической интерпретации пространства и времени являлась абсолютность размеров тел и интервалов времени. В механике Ньютона тела взаимодействовали на расстоянии мгновенно. Мгновенность передачи взаимодействия обуславливала ненужность какой-либо среды для передачи – принцип дальнодействия.

 

Критика, Лейбниц, но….

 

В середине XIX в. создание Максвеллом теории электромагнитного поля показало, что законы электромагнетизма и механики плохо согласуются друг с другом. Уравнения механики в известном тогда виде не менялись после преобразований Галилея, а уравнения Максвелла при применении этих преобразований к ним самим или к их решениям – меняли свой

вид и, главное, давали другие предсказания

 

Преобразова́ния Галиле́я — в классической механике преобразования координат и скорости при переходе от одной инерциальной системы отсчета к другой

Из преобразований Галилея следует классический закон преобразования скоростей при переходе от одной системы отсчета к другой:

Таким образом, скорость тела относительно неподвижной системы координат равна векторной сумме скорости тела относительно движущейся системы координат и скорости системы отсчета относительно неподвижной системы отсчета (сложение скоростей)

 

Примеры с поездом или др.движ. объектом (65+5 или 65-5)

 

Уравнения Максвелла были справедливы в какой-либо одной системе координат, становятся несправедливыми при переходе к другой, движущейся относительно первой прямолинейно и равномерно. Дело обстоит так, как если бы существовала некая среда, заполняющая всю Вселенную, такая, что уравнения Максвелла справедливы только в одной, связанной с этой средой системе отсчета. Именно с этой средой отсчета ассоциировали последователи Максвелла понятие эфира.

 

Гипотезу эфира в научной форме выдвинул Х. Гюйгенс для объяснения принципа близкодействия. Он предположил, что пространство наполнено неким веществом - эфиром, и построил, опираясь на эфир, волновую теорию света. Она отлично объяснила множество разных оптических явлений и даже предсказала такие, которые потом были открыты, - словом, оказалась хорошей гипотезой. За одним исключением: эфир пришлось снабдить столь противоречивыми свойствами, что разум отказывался верить. С одной стороны, совершенная бесплотность (дабы не мешать движению планет), а с другой - упругость, в тысячи раз превышающая упругость самой лучшей стали (иначе не будет распространяться с нужной скоростью свет). Все-таки существует эфир или нет?

Классическая физика была уверена, что эфир должен вести себя подобно воздуху, дующему, например, на движущейся открытой платформе. Как может быть иначе? Если эфир неподвижен, то любой движущийся в нём предмет должен встретить эфирный ветер, дующий в противоположном направлении. Свет - волновое движение в неподвижном эфире. На скорость света, измеренную с движущегося предмета, эфирный ветер должен, конечно, влиять.

 

В 1887 американские учёные Альберт Майкельсон и Эдуард Морли провели тщательно выполненный эксперимент по определению эфирного ветра, но ничего не обнаружили. Позже этот эксперимент повторялся и другими экспериментаторами с применением всё более совершенных приборов, но результат всегда был отрицательным. Описание опыта СРС стр 56-58 в электр.книге

 

Г. А. Лоренц пытался объяснить полученный результат. Ученый рассмотрел следующую гипотезу:

· если во время движения через эфир все тела, в том числе и установка, на которой проводил свои эксперименты Майкельсон, несколько сокращаются в направлении движения, то уловить сложение скоростей будет невозможно.

В 1904 году Г. А. Лоренц сделал попытку распространить действие принципа относительности на электродинамические процессы. Он исходил из тех соображений, что законы электродинамики должны иметь один и тот же вид во всех равноправных инерциальных системах отсчета. Однако уравнения электродинамики меняли свою форму в разных инерциальных системах отсчета. Г. А. Лоренц искал такие преобразования координат, которые сохраняли бы неизменными уравнения электродинамики. Полученные им формулы удовлетворяли поставленным требованиям, но содержали преобразования не только координат, но и времени, и массы заряженной микрочастицы:

· масса движущейся частицы и темп течения времени в инерциальных системах отсчета получали зависимость от скорости движения системы относительно скорости света.

Парадокс возрастания массы Лоренц пытался преодолеть, приписывая электромагнитному полю двигающегося заряда свойство возрастания инерции, но устоявшийся догмат однородности времени психологически преодолеть не смог. Поэтому преобразование времени он счел фиктивным, а следовательно, все преобразования лишенными физического смысла, утверждая, тем самым, неприменимость принципа относительности к электродинамическим процессам.

Преобразования Лоренца делали применимым принцип относительности к электродинамике, и к постулированию их применимости также в механике. После этого обобщённый принцип относительности (подразумевающий применимость и к механике, и к электродинамике, а также к возможным новым теориям) стал называться принципом относительности Эйнштейна, а его механическая формулировка – принципом относительности Галилея.

 

 

В 1905 г. в журнале «Анналы физики» появилась статья неизвестного тогда еще А. Эйнштейна «К электродинамике движущихся тел». В ней и были сформулированы основы специальной теории относительности.

Специальная теория относительности.Эйнштейнпришел к выводу о невозможности существования ньютоновского абсолютного пространства и времени, так как это противоречит принципу относительности Галилея. Эйнштейн считал, что принцип относительности является квинтэссенцией классической механики, и поэтому должен быть сохранен. От концепции абсолютного пространства и времени, как не имеющих реального физического содержания, следовало отказаться.

Специальная теория относительности (СТО) базируется на двух постулатах. Первый постулат СТО — расширенный принцип относительности. Он уравнивал между собой не только

инерциальные системы, движущиеся равномерно и прямолинейно друг относительно друга, но и распространил действие принципа на законы электродинамики.

 

Обобщенный принцип относительности Эйнштейна утверждает, что никакими физическими опытами (механическими и электромагнитными) внутри данной системы отсчета нельзя установить, движется эта система равномерно или покоится. При этом пространство и время являются связанными друг с другом, зависящими друг от друга (у Галилея и Ньютона пространство и время независимы друг от друга).

Другая формулировка: • все физические законы одинаковы во всех инерциальных системах;

Второй постулат

скорость света (в пустоте) одинакова с точки зрения всех наблюдателей независимо от движения источника света относительно наблюдателя.

Второй постулат СТО Эйнштейн позаимствовал из электродинамики — это принцип постоянства скорости света, которая в вакууме примерно равна 300 000 км/с (решение уравнений максвелла). Второй постулат говорит о постоянстве скорости света во всех инерциальных системах отсчета. Он связан с принципом относительности, в соответствии с которым если и существует максимальная скорость, то она должна быть одинаковой во всех инерциальных системах отсчета.

Это положение противоречит ньютоновской механике, в частности классическому правилу сложения скоростей Галилея.

Скорость света не складывается с другими скоростями, она абсолютна, всегда одна и та же, и, говоря о ней, нам не нужно указывать систему отсчета. Скорость света — это верхний предел для скорости перемещения любых тел в природе, для скорости распространения любых волн и сигналов. Она максимальна — это абсолютный рекорд скорости. Она является предельной скоростью любых физических взаимодействий, да и вообще всех мыслимых взаимодействий в мире. Если бы это было не так, нарушился бы фундаментальный закон причинности, утверждающий, что причина всегда предшествует следствию. Тогда разрушилась бы логическая связь событий во Вселенной, в мире воцарился абсолютный хаос и случайность.

Одновременное действие этих двух постулатов кажется невозможным. Чтобы решить данный парадокс, Эйнштейн обращается к анализу проблемы одновременности, которая и составляет суть теории относительности. Классическая физика решала эту проблему очень просто в рамках концепции абсолютного времени, в соответствии с которой любые события во всех точках Вселенной совершались в рамках одной системы отсчета (абсолютного времени). Поэтому одновременность событий считалась реально существующим фактом. Чтобы доказать существование одновременности, нужно иметь в двух точках пространства, в которых находятся интересующие нас объекты, одинаково устроенные, синхронно идущие часы. Синхронизировать эти часы можно, воспользовавшись световыми сигналами, которые будут направляться из одной точки в другую, а потом возвращаться обратно. Если часы при этом будут показывать одинаковое время, значит, события в данных точках протекают одновременно. Если бы свет распространялся мгновенно, проблемы бы не существовало. Но так как свет обладает конечной скоростью, то наши сигналы в разных точках покажут разные результаты. Таким образом, события, одновременные для одного наблюдателя, окажутся неодновременными для другого. Рассказ

 

Следовательно, понятие одновременности всегда относительно. Из нового понимания одновременности вытекают важнейшие выводы специальной теории относительности, которые известны под названием релятивистских эффектов (были получены Ньютоном при использовании преобразований Эйнштейном) относительными становятся не только скорости и траектории тел, как в классической механике, но и пространственно-временные характеристики тел, традиционно считавшиеся неизменными, — линейные размеры, масса и время протекания процессов. Оказывается, эти свойства зависят от скорости движения тел (заметны про скоростях, приближающихся к скорости света).

 

Таким образом, релятивистские эффекты — это изменения пространственно-временных характеристик тел, заметные на больших скоростях, сравнимых со скоростью света. Их три:

1) сокращение линейных размеров тела в направлении его движения.

Чем ближе скорость космического корабля, пролетающего мимо неподвижного наблюдателя, к скорости света, тем меньше будут его размеры для наблюдателя. Если бы корабль смог двигаться со скоростью света, то его наблюдаемая длина оказалась бы равной нулю, что невозможно;

2) увеличение массы быстродвижущихся тел.

Масса движущегося тела с точки зрения неподвижного наблюдателя оказывается больше массы покоя того же тела. Чем ближе скорость тела к скорости света, тем больше возрастает его масса. Если бы тело смогло двигаться со скоростью света, то его масса возросла бы до бесконечности, что невозможно. Поэтому никакое тело с массой, отличной от нуля, нельзя разогнать до скорости света, так как это потребовало бы бесконечной энергии. В связи с этим появилась самая известная формула теории относительности, связывающая массу и энергию. Эйнштейну удалось доказать, что масса тела есть мера содержащейся в нем энергии: Е = тс2;

3) замедление времени в быстродвижущихся телах.

Так, в быстро летящем космическом корабле время течет медленнее, чем для неподвижного наблюдателя. Эффект замедления времени на космическом корабле сказался бы не только на часах, но на всех процессах, протекающих в этом корабле, в том числе и на биологических ритмах его экипажа. Чтобы проиллюстрировать эту ситуацию был предложен так называемый парадокс близнецов. Если бы из двух близнецов один остался на Земле, а другой улетел к звездам, то космонавт с точки зрения земного наблюдателя старился бы медленнее, чем его брат-близнец. Поэтому после возвращения домой космонавт обнаружил бы, что брат значительно старше его.

Интересно, что чем дальше совершается полет и чем ближе скорость корабля к скорости света, тем большей будет разница в возрасте между близнецами. Она может измеряться даже сотнями и

тысячами лет, в результате чего экипаж корабля сразу перенесется в близкое или более отдаленное будущее, минуя промежуточное время, поскольку ракета вместе с экипажем выпала из хода развития на Земле.

Таким образом, специальная теория относительности утверждает, что пространство и время нельзя рассматривать изолированно друг от друга. На основании этих выводов в 1907 г. немецкий математик Г. Минковский высказал предположение, что три пространственных и одна временная размерность любых материальных тел тесно связаны между собой. Все события во Вселенной происходят в едином четырехмерном пространстве-времени. СРС по ЕНКМ с 66

 

НО!!!! Пространственно-временной интервал между двумя событиями не изменяется при переходе из одной инерциальной системы в другую. (промежутки времени между событиями меняются, но последовательность событий нет)

В СТО не нарушается принцип причинности (инвариантность причинно-

 

Обшая теория относительности. В рамках общей теории относительности, которая создавалась в течение десяти лет, с 1906 по 1916 г., А. Эйнштейн обратился к проблеме тяготения, давно привлекавшей к себе внимание ученых. Поэтому общую теорию относительности часто называют теорией тяготения. В ней были раскрыты новые стороны зависимости пространственно-временных отношений от материальных процессов. Общая теория относительности основывается уже не на двух, а на трех постулатах.

Первый постулат общей теории относительности — расширенный принцип относительности, который утверждает инвариантность законов природы в любых системах отсчета, как инерциальных, так и неинерциальных, движущихся с ускорением или замедлением. Он говорит о том, что нельзя приписывать абсолютный характер не только скорости, но и ускорению, которое имеет конкретный смысл только по отношению к фактору, его определяющему.

Второй постулат — принцип постоянства скорости света — остается неизменным.

Третий постулат — принцип эквивалентности инертной и гравитационной масс. Этот факт был известен еще в классической механике. Теоретический анализ, который был сделан ученым, позволил сделать вывод, что физика не знает способа отличить эффект гравитации от эффекта ускорения. Иначе говоря, кинематические эффекты, возникающие под действием гравитационных сил, эквивалентны эффектам, возникающим под действием ускорения. Так, если ракета взлетает с ускорением 2g, то экипаж ракеты будет чувствовать себя так, как будто он находится в удвоенном поле тяжести Земли.

Важнейшим выводом общей теории относительности стала идея, что изменение геометрических (пространственных) и временных характеристик тел происходит не только при движении с большими скоростями, как это было доказано специальной теорией относительности, но и в гравитационных полях. Сделанный вывод неразрывно связывал общую теорию относительности с геометрией, но общепризнанная геометрия Евклида для этого не годилась. Эйнштейн использовал геометрию Б. Римана, которая верна для поверхности сферы, и сделал вывод о кривизне пространства-времени.

Как можно представить себе искривление пространства, о котором говорит общая теория относительности? Представим себе очень тонкий лист резины и будем считать, что это модель

пространства. Расположим на этом листе большие и маленькие шарики — модели звезд и планет. Шарик будет прогибать лист резины тем больше, чем больше его масса. Это наглядно

демонстрирует зависимость кривизны пространства-времени от массы тела, подтверждает правоту Римана.

Теория относительности установила не только искривление пространства под действием полей тяготения, но и замедление хода времени в сильных гравитационных полях. Даже тяготение Солнца, достаточно небольшой по космическим меркам звезды, влияет на темп протекания времени, замедляя его вблизи себя. Поэтому, если мы пошлем радиосигнал в какую-то точку, путь к которой проходит рядом с Солнцем, путешествие радиосигнала займет в таком случае больше времени, чем тогда, когда на пути этого сигнала, отправленного на такое же расстояние, Солнца не будет. Задержка сигнала при его прохождении вблизи Солнца составляет около 0,0002 с. Такие эксперименты проводились, начиная с 1966 г., в качестве отражателя использовались как поверхности планет (Меркурия, Венеры), так и оборудование межпланетных станций.

Одно из самых фантастических предсказаний общей теории относительности — полная остановка времени в очень сильном поле тяготения. Замедление времени тем больше, чем сильнее

тяготение. Гравитационное замедление времени, мерой и свидетельством которого служит красное смещение, очень значительно вблизи нейтронных звезд, а у гравитационного радиуса

черной дыры оно столь велико, что время там, с точки зрения внешнего наблюдателя, просто замирает. Существование черных дыр было предсказано общей теорией относительности. Если бы наше светило вдруг сжалось и превратилось в шар с радиусом в 3 км или меньше (радиус Солнца

равен 700 000 км), оно превратилось бы в черную дыру. Из-за такого сжатия сила тяготения на поверхности, откуда исходит свет, возрастет настолько, что гравитационное красное смещение

окажется действительно бесконечным. Солнце просто станет невидимым, ни один фотон не вылетит за его пределы. С нашим Солнцем такого не случится, а вот звезды, превосходящие Солнце по массе в 3 раза, в конце своей эволюции превращаются в такие объекты.