Магнитное поле. Опыт Ампера

Магнетизм

В 1820 г. датский физик Ханс Эрстед показывал студентам тепловое действие тока. При включении тока отклонилась стрелка случайно оказавшегося рядом компаса. Описание этого опыта вызвало лавину новых открытий. Так родилась новая область физики – электродинамика. Частью электродинамики (электромагнетизма) является магнитостатика, изучающая не изменяющиеся во времени (стационарные, или постоянные) магнитные поля.

Магнитное поле– силовое поле (подобное гравитационному или электрическому), окружающее токи и постоянные магниты. Магнитное поле не действует на неподвижные заряды, оно может создаваться только движущимися зарядами и действует только на движущиеся заряды. Магнитные силы, действующие со стороны магнитного поля на движущиеся заряды, могут:

– искривлять их траекторию (если заряд движется в свободном пространстве);

– отклонять проводник (если заряды движутся в проводнике);

– поворачивать контур (если проводник образует замкнутый контур).

Все объекты, на которые действует магнитное поле:

1. движущиеся заряды,

2. проводники с током,

3. контуры с током,

4. постоянные магниты,

5. изменяющееся электрическое поле,

являются источниками магнитного поля.

Сразу после открытия Эрстеда произошел решающий сдвиг. Вместо магнитов стали изучать взаимодействие проводов с током, и в том же 1820 г. были сформулированы закон Био–Савара и закон Ампера.

Сила взаимодействия бесконечно длинных параллельных проводников с током определяется законом Ампера (рис. 3.1):

,

 

где – магнитная проницаемость среды; и – силы токов; –расстояние между проводниками; – длина проводника.

Как видно из рис. 3.1, сонаправленные параллельные токи притягиваются, противоположно направленные – отталкиваются.

 

Рис. 3.1. Магнитное взаимодействие параллельных и

антипараллельных токов