Распределение Пуассона (закон редких событий)
Основные законы распределения случайной величины
ЛЕКЦИЯ 9
(продолжение)
Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Для определения вероятности k – появлений события А в этих испытаниях используют, как вам уже известно, формулу Бернулли. Однако, как быть если n велико, а вероятность р события А достаточно мала ()[8]. В таких случаях прибегают к асимптотической формуле Пуассона.
Итак, поставим своей задачей найти вероятность того, что при очень большом числе испытаний, в каждом из которых вероятность события очень мала, событие наступит ровно k раз.
Сделаем важное допущение: пусть произведение сохраняет постоянное значение, а именно . Это означает, что среднее число появлений события в различных сериях испытаний, то есть при различных значениях n, остаётся неизменным.
Воспользуемся формулой Бернулли для вычисления интересующей нас вероятности:
Приняв во внимание, что n имеет очень большое значение, вместо найдём . При этом будет найдено лишь приближённое значение отыскиваемой вероятности: n хотя и велико, но всё же конечно, а при отыскании предела мы устремим n к бесконечности.
Итак
В результате (для простоты записи знак приближённого равенства опущен) запишем
.
Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) редких (р мало) событий.
Таким образом, будем говорить, что дискретная случайная величина , принимающая счётное множество значений, подчиняется закону распределения Пуассона, если вероятности её возможных значений задаются выражением:
.
Свойства распределения Пуассона:
1. .
Действительно:
2. .
3. если , то из биномиального распределения следует закон распределения Пуассона.
ПРИМЕР 1.Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равна 0,0002. Найти вероятность того, что на базу прибудут: а) три негодных изделия; б) не более трёх повреждённых изделия.
Решение: по условию n=5000, p=0,0002. Найдём .
а) k = 3. Искомая вероятность по формуле Пуассона приближённо равна
.
б) Пусть случайная величина Х – число изделий, повреждённых в пути, то есть . Очевидно, что данная случайная величина распределена по биномиальному закону. Следовательно, искомую вероятность можно вычислить по формуле
.
Но, так как , то по свойству 3о можем воспользоваться законом распределения Пуассона, то есть, можем записать:
.
Замечание.По формуле Пуассона можно вычислить вероятность того, что число событий, происшедших за время равно , если события образуют пуассоновский поток, причём – интенсивность потока, то есть среднее число событий, которые появляются в единицу времени:
.
ПРИМЕР 2. В течение часа коммутатор получает в среднем 60 вызовов. Какова вероятность того, что за время 30 сек, в течении которых телефонистка отлучилась, не будет ни одного вызова?
Решение: Найдём, прежде всего, – среднее число вызовов за 1 секунду:
.
Тогда, при , получим: