Знакочередующиеся ряды.

Положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена.

В случае, когда последовательность частичных сумм положительного ряда неограничена, будем говорить, что его сумма равна .

При доказательстве расходимости гармонического ряда мы, по существу, доказали, что последовательность его частичных сумм неограничена.

18.1.4. Знакопеременные ряды.Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости.

18.1.4.1. Абсолютная и условная сходимость числовых рядов. Рассмотрим, вместе с рядом , ряд, составленный из модулей членов ряда (А): . Докажем теорему: если сходится ряд (|A|), то сходится исходный ряд (А).

Доказательство. Пусть сходится ряд (|A|). Это – сходящийся ряд, поэтому множество его частичных сумм , ограничено. В частичной сумме исходного ряда отделим множества неотрицательных и отрицательных членов; неотрицательным членам припишем индекс , у отрицательных членов вынесем знак за скобку и их модулям припишем индекс : ; здесь символом обозначена сумма входящих в положительных членов, обозначает сумму модулей входящих в отрицательных членов, . Итак, . Очевидно, что . - ограниченное множество, поэтому . Но , . Суммы тоже возрастают с ростом n и ограничены сверху, поэтому существуют конечные пределы . Но , поэтому существует конечный предел , т.е. исходный ряд (А) сходится, что и требовалось доказать.

Определение. Ряд называется абсолютно сходящимся, если сходится ряд абсолютных величин его членов. Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.

Доказанная теорема сводит исследование некоторых знакопеременных рядов к положительным рядам. Для знакопеременных рядов определённой структуры - знакочередующихся рядов - также существует достаточный признак сходимости.

Определение.Знакочередующимися называются ряды, члены которых поочерёдно то неотрицательны, то отрицательны.

Согласно этому определению, структура знакопеременных рядов такова:

, или , где все . Мы будем рассматривать первую из этих форм; вторая сводится к первой выносом знака за сумму.

Достаточный признак сходимости знакочередующегося ряда (признак Лейбница).Если

1. Последовательность, составленная из модулей членов знакочередующегося ряда, монотонно убывает, т.е. ;

2. Выполняется необходимый признак сходимости ряда, т.е. ,

то ряд сходится. Его сумма по абсолютной величине не превосходит абсолютную величину первого члена.

Доказательство. Рассмотрим последовательность чётных частичных сумм ряда. Представим эту сумму в виде . Из первого условия теоремы следует, что суммы в круглых скобках неотрицательны, поэтому последовательность монотонно возрастает с ростом n. С другой стороны, , т.е. эта последовательность ограничена сверху величиной . Следовательно . Но для нечётных сумм , так как по второму условию теоремы . Таким образом, частичные суммы имеют предел независимо от их четности или нечётности, т.е. ряд сходится, и его сумма . Знак суммы совпадает со знаком первого члена.

С помощью признака Лейбница доказывается сходимость рядов , . , и т.д. Третий из этих рядов сходится абсолютно ( сходится), остальные - условно (ряды из модулей членов расходятся). Естественно, существуют знакочередующиеся ряды, для которых условия теоремы Лейбница могут не выполняться; если не выполняется второе условие - необходимый признак сходимости - то ряд заведомо расходится; если не выполняется первое условие, то задача должна решаться с помощью других соображений. Рассмотрим, например, ряд Понятно, что первое условие теоремы Лейбница не выполняется (например, ), поэтому эта теорема неприменима и требуется изобрести индивидуальный способ решения этой задачи. Сгруппируем члены попарно: Сумма в скобке , поэтому последний ряд (со скобками) расходится. Последовательность чётных частичных сумм неограничена, поэтому исходный ряд расходится.

18.2. Функциональные ряды.

18.2.1. Основные определения. Пусть дана бесконечная последовательность функций .

независимой переменной х, имеющих общую область определения D. Ряд

называется функциональным рядом.

Примеры: 1. ;

2. ;

3. .

Для каждого значения функциональный ряд превращается в числовой ряд, сходящийся или расходящийся. Так, первый из примеров - геометрическая прогрессия со знаменателем х, этот ряд сходится при х=1/2 и расходится при х=2.

Определение. Значение , при котором функциональный ряд сходится, называется точкой сходимости функционального ряда. Множество всех точек сходимости функционального ряда называется областью сходимости этого ряда. Область сходимости обозначим .

Так, для первого из приведённых примеров область сходимости - интервал (-1, 1); для второго - ряда Дирихле - область сходимости - полуось х>0; третий ряд абсолютно сходится в любой точке х, так как при любом х справедливо ; следовательно, область сходимости третьего ряда ).

Для каждого мы получаем сходящийся числовой ряд, свой для каждого х, поэтому сумма функционального ряда есть функция , определённая на области . Так, для первого примера, как мы знаем, , т.е. на интервале

(-1, 1); вне этого интервала равенство не имеет места; так, в точке х=2 ряд расходится, а . Сумма второго ряда - знаменитая функция Римана , определённая на полуоси ; эта функция играет важную роль в теории чисел. Сумма третьего ряда, как мы увидим дальше при изучении рядов Фурье, равна функции периода , получающаяся в результате периодического повторения функции , определённой на отрезке , по всей числовой оси.

Коль скоро мы осознали, что сумма функционального ряда - функция, встаёт вопрос о свойствах этой функции. Так, члены ряда могут иметь свойства непрерывности, дифференцируемости, интегрируемости и т.д. Будет ли обладать этими свойствами сумма ряда? То, что это не праздный вопрос, показывает следующий пример. Пусть , , , , …, , …. Ряд состоит из непрерывных членов, найдём его область сходимости и сумму. Частичная сумма ряда . Последовательность при имеет конечный предел только, если (это и есть область сходимости ряда), при этом Таким образом, для ряда, члены которого - непрерывные функции, мы получили разрывную на области сходимости сумму.

Сумма ряда сохраняет хорошие свойства своих членов в том случае, если ряд сходится равномерно.

18.2.2. Равномерная сходимость функционального ряда.Факт сходимости ряда к своей сумме в точке сходимости х означает, в соответствии с определением предела, то, что для любого числа существует такое натуральное N, что при n>N верно . Здесь - частичная сумма ряда в точке х. Число N зависит, естественно, от , но оно зависит и от х, т.е. . В некоторых точках области сходимости ряд может сходиться к своей сумме быстро, т.е. неравенство будет выполняться при не очень больших значениях N, в других точках эта сходимость может быть медленной. Если ряд сходится к своей сумме примерно с одинаковой скоростью во всех точках х, то сходимость называется равномерной. Более точно, говорят, что ряд сходится равномерно на области G, если для любого числа существует такое натуральное число , одно и то же для всех точек ,что при n>N выполняется неравенство (или, что тоже самое, , где - остаток ряда после n-го члена).

у
an
a3
a2
a1
а
b
u1(x)
u2(x)
u3(x)
un(x)
Понятие равномерной сходимости - одно из фундаментальных понятий функционального анализа. Именно равномерная сходимость обеспечивает сохранение суммой ряда хороших свойств своих членов. Чтобы осознать смысл и значение этого понятия, требуется время, которого у нас, к сожалению, нет. К счастью, имеется простой и понятный достаточный признак равномерной сходимости - признак Вейерштрасса.

Признак Вейерштрасса. Если существует такой положительный сходящийся числовой ряд , что члены функционального рядав любой точке удовлетворяют неравенству , то функциональный ряд сходится равномерно в области G.

х
Числовой ряд, удовлетворяющий неравенству , называется мажорирующим рядом, или мажорантой функционального ряда; про функциональный ряд говорят, что он мажорируется числовым рядом.

а
b
х
)
(
-1
Рассмотрим примеры, приведённые в начале раздела. Геометрическая прогрессия равномерно сходится на любом отрезке , целиком лежащем в области сходимости (-1,1). Действительно, построим мажоранту для геометрической прогрессии на . Из чисел а, b выберем большее по модулю. Пусть, например, . Тогда для любого выполняется . Таким образом, сходящийся (так как ) числовой ряд мажорирует на функциональный ряд , откуда, по признаку Вейерштрасса, следует равномерная сходимость этого функционального ряда.

Ряд равномерно сходится на любой полуоси , так как на этом множестве он мажорируется рядом .

Ряд равномерно сходится на всей числовой оси (мажоранта для этого ряда уже получена - это ряд ).