Знакочередующиеся ряды.
Положительный ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена.
В случае, когда последовательность частичных сумм положительного ряда неограничена, будем говорить, что его сумма равна .
При доказательстве расходимости гармонического ряда мы, по существу, доказали, что последовательность его частичных сумм неограничена.
18.1.4. Знакопеременные ряды.Так мы будем называть ряды, которые содержат бесконечные множества как положительных, так и отрицательных членов. Естественно попытаться свести исследование сходимости таких рядов к исследованию сходимости рядов с положительными членами, для которых имеются рассмотренные выше тонкие признаки сходимости, поэтому введём понятие абсолютной сходимости.
18.1.4.1. Абсолютная и условная сходимость числовых рядов. Рассмотрим, вместе с рядом , ряд, составленный из модулей членов ряда (А): . Докажем теорему: если сходится ряд (|A|), то сходится исходный ряд (А).
Доказательство. Пусть сходится ряд (|A|). Это – сходящийся ряд, поэтому множество его частичных сумм , ограничено. В частичной сумме исходного ряда отделим множества неотрицательных и отрицательных членов; неотрицательным членам припишем индекс , у отрицательных членов вынесем знак за скобку и их модулям припишем индекс : ; здесь символом обозначена сумма входящих в положительных членов, обозначает сумму модулей входящих в отрицательных членов, . Итак, . Очевидно, что . - ограниченное множество, поэтому . Но , . Суммы тоже возрастают с ростом n и ограничены сверху, поэтому существуют конечные пределы . Но , поэтому существует конечный предел , т.е. исходный ряд (А) сходится, что и требовалось доказать.
Определение. Ряд называется абсолютно сходящимся, если сходится ряд абсолютных величин его членов. Если ряд сходится, а ряд расходится, то ряд называется условно сходящимся.
Доказанная теорема сводит исследование некоторых знакопеременных рядов к положительным рядам. Для знакопеременных рядов определённой структуры - знакочередующихся рядов - также существует достаточный признак сходимости.
Определение.Знакочередующимися называются ряды, члены которых поочерёдно то неотрицательны, то отрицательны.
Согласно этому определению, структура знакопеременных рядов такова:
, или , где все . Мы будем рассматривать первую из этих форм; вторая сводится к первой выносом знака за сумму.
Достаточный признак сходимости знакочередующегося ряда (признак Лейбница).Если
1. Последовательность, составленная из модулей членов знакочередующегося ряда, монотонно убывает, т.е. ;
2. Выполняется необходимый признак сходимости ряда, т.е. ,
то ряд сходится. Его сумма по абсолютной величине не превосходит абсолютную величину первого члена.
Доказательство. Рассмотрим последовательность чётных частичных сумм ряда. Представим эту сумму в виде . Из первого условия теоремы следует, что суммы в круглых скобках неотрицательны, поэтому последовательность монотонно возрастает с ростом n. С другой стороны, , т.е. эта последовательность ограничена сверху величиной . Следовательно . Но для нечётных сумм , так как по второму условию теоремы . Таким образом, частичные суммы имеют предел независимо от их четности или нечётности, т.е. ряд сходится, и его сумма . Знак суммы совпадает со знаком первого члена.
С помощью признака Лейбница доказывается сходимость рядов , . , и т.д. Третий из этих рядов сходится абсолютно ( сходится), остальные - условно (ряды из модулей членов расходятся). Естественно, существуют знакочередующиеся ряды, для которых условия теоремы Лейбница могут не выполняться; если не выполняется второе условие - необходимый признак сходимости - то ряд заведомо расходится; если не выполняется первое условие, то задача должна решаться с помощью других соображений. Рассмотрим, например, ряд Понятно, что первое условие теоремы Лейбница не выполняется (например, ), поэтому эта теорема неприменима и требуется изобрести индивидуальный способ решения этой задачи. Сгруппируем члены попарно: Сумма в скобке , поэтому последний ряд (со скобками) расходится. Последовательность чётных частичных сумм неограничена, поэтому исходный ряд расходится.
18.2. Функциональные ряды.
18.2.1. Основные определения. Пусть дана бесконечная последовательность функций .
независимой переменной х, имеющих общую область определения D. Ряд
называется функциональным рядом.
Примеры: 1. ;
2. ;
3. .
Для каждого значения функциональный ряд превращается в числовой ряд, сходящийся или расходящийся. Так, первый из примеров - геометрическая прогрессия со знаменателем х, этот ряд сходится при х=1/2 и расходится при х=2.
Определение. Значение , при котором функциональный ряд сходится, называется точкой сходимости функционального ряда. Множество всех точек сходимости функционального ряда называется областью сходимости этого ряда. Область сходимости обозначим .
Так, для первого из приведённых примеров область сходимости - интервал (-1, 1); для второго - ряда Дирихле - область сходимости - полуось х>0; третий ряд абсолютно сходится в любой точке х, так как при любом х справедливо ; следовательно, область сходимости третьего ряда ).
Для каждого мы получаем сходящийся числовой ряд, свой для каждого х, поэтому сумма функционального ряда есть функция , определённая на области . Так, для первого примера, как мы знаем, , т.е. на интервале
(-1, 1); вне этого интервала равенство не имеет места; так, в точке х=2 ряд расходится, а . Сумма второго ряда - знаменитая функция Римана , определённая на полуоси ; эта функция играет важную роль в теории чисел. Сумма третьего ряда, как мы увидим дальше при изучении рядов Фурье, равна функции периода , получающаяся в результате периодического повторения функции , определённой на отрезке , по всей числовой оси.
Коль скоро мы осознали, что сумма функционального ряда - функция, встаёт вопрос о свойствах этой функции. Так, члены ряда могут иметь свойства непрерывности, дифференцируемости, интегрируемости и т.д. Будет ли обладать этими свойствами сумма ряда? То, что это не праздный вопрос, показывает следующий пример. Пусть , , , , …, , …. Ряд состоит из непрерывных членов, найдём его область сходимости и сумму. Частичная сумма ряда . Последовательность при имеет конечный предел только, если (это и есть область сходимости ряда), при этом Таким образом, для ряда, члены которого - непрерывные функции, мы получили разрывную на области сходимости сумму.
Сумма ряда сохраняет хорошие свойства своих членов в том случае, если ряд сходится равномерно.
18.2.2. Равномерная сходимость функционального ряда.Факт сходимости ряда к своей сумме в точке сходимости х означает, в соответствии с определением предела, то, что для любого числа существует такое натуральное N, что при n>N верно . Здесь - частичная сумма ряда в точке х. Число N зависит, естественно, от , но оно зависит и от х, т.е. . В некоторых точках области сходимости ряд может сходиться к своей сумме быстро, т.е. неравенство будет выполняться при не очень больших значениях N, в других точках эта сходимость может быть медленной. Если ряд сходится к своей сумме примерно с одинаковой скоростью во всех точках х, то сходимость называется равномерной. Более точно, говорят, что ряд сходится равномерно на области G, если для любого числа существует такое натуральное число , одно и то же для всех точек ,что при n>N выполняется неравенство (или, что тоже самое, , где - остаток ряда после n-го члена).
у |
an |
a3 |
a2 |
a1 |
а |
b |
u1(x) |
u2(x) |
u3(x) |
un(x) |
Признак Вейерштрасса. Если существует такой положительный сходящийся числовой ряд , что члены функционального рядав любой точке удовлетворяют неравенству , то функциональный ряд сходится равномерно в области G.
х |
а |
b |
х |
) |
( |
-1 |
Ряд равномерно сходится на любой полуоси , так как на этом множестве он мажорируется рядом .
Ряд равномерно сходится на всей числовой оси (мажоранта для этого ряда уже получена - это ряд ).