Единицы и размерности физических величин.

Некоторое значение физической величины принимается за единицу этой величины . Размер физической величины определяется соотношением , где – числовое значение этой величины. Это соотношение называют основным уравнением измерения, так как целью измерения, по существу, является определение числа .

Обеспечение единства измерений предполагает прежде всего повсеместное использование общепринятых и строго определенных единиц физических величин. Между различными физическими величинами объективно существует разного рода взаимосвязи количественно выражаемые соответствующими уравнениями. Эти уранения используются для выражения единиц одних физических величин через другие. Однако число таких уравнений в любом разделе науке меньше числа входящих в них физических величин. Поэтому для создания системы единиц этих величин некоторая их основополагающая часть, равная , должна быть оговорена и строго определена вне зависимости от других величин. Такие входящие в систему физические величины, условно принятые в качестве независимых от других величин, называются основными физическими величинами. Остальные величины, входящие в систему и определяемы через основные физические величины, называются производными физическими величинами. В соответствии с этим единицы физических величин также разделяются на основные и производные единицы.

Если A, B, C, … – полный набор основных физических величин данной системы, то для любой производной величины может быть определена ее размерность (dimension), отражающая ее связь в основными величинами системы, в виде

(1)

В этом соотношении показатели степени , , ,… для каждой конкретной производной физической величины находятся из уравнений, связывающих ее с основными величинами (часть этих показателей обычно оказывается равной нулю). Соотношение (1), называется формулой размерности, показывает, во сколько раз изменится значение производной величины при определенном изменении значений основных величин. Например, если значения величин A, B, C увеличились соответственно в 2, 3 и 4 раза, то при этом, согласно (1), значение величины увеличится в раз.

Основное практическое значение формулы размерности состоит в том, что она позволяет непосредственно определять любую производную единицу через основные единицы данной системы ,,,…

(2)

Правда, в этом выражении постоянный сомножитель требует дополнительного определения. Однако в большинстве практических случаев стараются выбирать . При таком условии производная единица называется когерентной.

Международная система единиц SI является когерентной системой (поскольку когерентны все ее производные единицы). Основные физические величины и их единицы в системе SI представлены в таблице 1.

Таблица 1

Величина Обозначение Размерность
Масса килограмм
Длина метр
Время секунда
Заряд кулон
Сила тока ампер
Сила света кандела
Количество вещества моль

 

Кроме этого, система SI включает в себя две дополнительные единицы, которые определены также независимо от остальных единиц, но не участвуют в образовании производных единиц. Это — единица плоского угла — радиан (рад) и единица телесного угла — стерадиан (ср). Все остальные единицы системы SI являются производными, причем часть из них имеет собственное наименование, а другие обозначаются в виде произведения степеней других. Например, такая производная физическая величина, как электрическая емкость, в системе SI имеет размерность и единицу, имеющую собственное наименование, — фарад ; а единица напряженности электрического поля, например, собственного наименования не имеет и обозначается как «вольт на метр» .

Совместно с единицами системы SI допускается использование кратных и дольных единиц, которые образуются путем добавления к названию единицы определенной приставки, означающей умножение данной единицы на , где — целое положительное (для кратных единиц) или отрицательное (для дольных единиц) число. Например, 1 ГГц (гигагерц) = 109 Гц, 1 нс (наносекунда) = 10-9 с, 1 кВт = 103 Вт. В таблице 2 приведены наименования приставок дольных и кратных единиц.