Тема 2 ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ. ЕДИНИЦЫ ИЗМЕРЕНИЙ

Условные знаки -графические обозначения , при помощи которых на картах(планах) показывают местоположение объектов и явлений, а также их качественные и количественные характеристики.

Картографические условные знаки.

Содержание топографических карт и планов представляет собой совокупность показанных на них объектов и сообщаемых о них сведений.Эту информацию передают картографические условные знаки.

Условные знаки должны быть:

хорошоразличимымимежду собой, наглядными и выразительными, т. е. по возможности напоминать рисунком или цветом объекты местности, которые он изображают;
содержательными, т. е. давать по возможности полную количественную и качественную характеристику изображаемых объектов;
стандартными, т. е. по возможности одинаковыми по начертанию для топографических карт и планов разных масштабов;
экономичными, т. е. занимать на карте минимальное место, простыми для вычерчивания, удобными для их полиграфического воспроизведения, легкими для запоминания.
Начертание и размеры условных знаков приводятся в специальных таблицах условных знаков, которые являются обязательными для всех организаций, создающих топографические карты и планы. Например, «Условные знаки для топографической карты масштаба 1:10000»
Классификация условных знаков. Условные знаки делятся на следующие виды: масштабные, внемасштабные, линейные и пояснительныё.
Масштабные знаки— картографические условные знаки, применяемые для изображения объектов, выражающихся в масштабе карты. Границы таких предметов местности показывают, как правило, точечным пунктиром, а площадь внутри границ обозначается соответствующими условными знаками, называемыми площадными.


Внемасштабные знаки — картографические условные знаки, применяемые для изображения объектов, площади которых не выражаются в масштабе карты или плана, а сами объекты имеют важное значение или служат в качестве ориентиров и поэтому должны быть изображены на карте.


Чем мельче масштаб карты, тем больше объектов изображается на ней внемасштабными знаками. Местоположение объектов местности, изображенных на карте внемасштабными знаками, соответствует определенной точке на этих условных знаках.

Линейные знаки — картографические условные знаки, применяемые для изображения объектов линейного характера, длина которых выражается в масштабе карты, а ширина — внемасштабна. Так, например, линейными знаками изображаются линии связи и электропередач, нефте- и газопроводов, железные и другие дороги на картах мелких масштабов и т. д. Местоположению этих объектов на местности соответствует геометрическая ось знака.


Для придания карте большей наглядности и читаемости при изображении ее элементов пользуются различными цветами :элементы гидрографии и заболоченные участки показывают синим цветом; лесные массивы и сады зеленым; огнеупорные здания, шоссейные дороги — красным; не огнеупорные здания и улучшенные грунтовые дороги — оранжевым цветом; рельеф изображают коричневым цветом.
В дополнение к условным знакам – даются пояснительные подписи,которые поясняют вид или род изображенных на картах и планах объектов, а также дают их количественные и качественные характеристики.
Указывают также географические названия- собственные имена изображенных на карте географических объектов. К ним относятся названия населенных. пунктов, рек, озер, урочищ, перевалов и т.д.
Зарамочное оформление карты. Зарамочное оформление карты состоит из совокупности данных, облегчающих пользование картой и помещаемых за внешней рамкой карты.
Так, над северной частью внешней рамки посередине рамки пишется номенклатура листа карты, правее в скобках указывается название наиболее крупного населенного пункта, изображенного на этом листе карты. Около северо-восточного угла над внешней рамкой указывается гриф карты. Под южной частью внешней рамки, посередине, указывается численный масштаб, под ним — линейный масштаб, высота сечения рельефа горизонталями и система высот. Западнее масштаба дается схема взаимного расположения меридианов с указанием магнитного склонения и сближения меридианов. Восточнее масштаба строится график заложений.

 

 

 

2.1 Физические свойства, величины и шкалы

2.2 Единицы физических величин

2.3. Международная система ФВ (СИ)

2.4. Физические величины технологических процессов производства продуктов питания

2.1 Физические величины и шкалы

Физическая величина (ФВ) – одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов (физических систем, их состояний и происходящих в них процессов), но в количественном отношении индивидуальное для каждого из них. Индивидуальное в количественном отношении следует понимать так, что одно и то же свойство для одного объекта может быть в определенное число раз больше или меньше, чем для другого.

Как правило, термин "физическая величина" применяется в отношении свойств или характеристик, которые можно оценить количественно. К физическим величинам относятся масса, длина, время, давление, температура и т. д.

Физические величины целесообразно разделить на измеряемые и оцениваемые. Измеряемые ФВ могут быть выражены количественно в виде определенного числа установленных единиц измерения. Возможность введения и использования последних является важным отличительным признаком измеряемых ФВ. Однако существуют такие свойства, как вкус, запах и др., для которых не могут быть введены единицы измерения. Такие величины могут быть оценены, например, при помощи шкалы величины – упорядоченной последовательность ее значений, принятой по соглашению на основании результатов точных измерений.

По видам явлений ФВ делят на:

- вещественные, т.е. описывающие физические и физико-химические свойства веществ, материалов и изделий из них. К этой группе можно отнести массу, плотность, удельную поверхность и др.

- энергетические, т.е. величины, описывающие энергетические характеристики процессов преобразования, передачи и использования энергии. К ним относятся, например, сила тока, напряжение, мощность. Это активные величины, которые могут быть преобразованы в сигналы измерительной информации без использования вспомогательных источников энергии;

-характеризующие протекания процессов времени. К этой группе относятся различного рода спектральные характеристики, корреляционные функции и др.

По принадлежности к различным группам физических процессов ФВ делятся на пространственно-временные, механические, тепловые, электрические и магнитные, акустические, световые, физико-химические, ионизирующих излучений, атомной и ядерной физики.

По степени условной независимости от других величин данной группы ФВ делятся на основные (условно независимые), производные (условно зависимые) и дополнительные. Основная физическая величина – физическая величина, входящая в систему величин и условно принятая в качестве не зависящей от других величин этой системы. В качестве основных прежде всего были выбраны величины, характеризующие основные свойства материального мира: длина, масса, время. Остальные четыре основные физические величины выбраны таким образом, чтобы каждая из них представляла один из разделов физики: сила тока, термодинамическая температура, количество вещества, сила света. Каждой основной физической величине системы величин присваивается символ в виде строчной буквы латинского или греческого алфавита: длина – L, масса – М, время – Т, сила электрического тока – I, температура – O, количество вещества – N, сила света – J. Эти символы входят в название системы физических величин.

Производная физическая величина – физическая величина, входящая в систему величин и определяемая через основные величины этой системы. Например, производной физической величиной является плотность, определяемая через массу и объем тела.

К дополнительным физическим величинам относятся плоский и телесный углы.

Совокупность основных и производных ФВ, образованная в соответствии с принятыми принципами, называется системой физических величин.

По наличию размерности ФВ делятся на размерные, т.е. имеющие размерность, и безразмерные.

В тех случаях, когда необходимо подчеркнуть, что имеется в виду количественное содержание физической величины в данном объекте, следует употреблять понятие размер ФВ (размер величины) – количественная определенность ФВ, присущая конкретному материальному объекту, системе, явлению, процессу.

Значение ФВ (Q) – выражение размера физической величины в виде некоторого числа принятых для нее единиц. Значение физической величины получают в результате измерения или вычисления, например, 12 кг – значение массы тела.

Числовое значение ФВ (q) - отвлеченное число, входящее в значение величины

Уравнение

Q= q[Q] (2.1)

называется основным уравнением измерений.

Между размером и значением величины существует принципиальное различие. Размер величины не зависит от того, знаем мы его или нет. Выразить же размер мы можем при помощи любой из единиц данной величины и числового значения (кроме единицы массы – кг, можно использовать, например, г). Размеры разных единиц одной и той же величины различны.

Физическая величина Значение величины Числовое значение
Масса трубы 5 т 5000 кг
Давление пара 1×106 Па 10 бар 1×106

 

Взаимосвязь между основными и производными величинами системы выражают с помощью уравнений размерности.

Размерность физической величины (dimQ) – выражение в форме степенного одночлена, которое отражает связь величины с основными единицами системы и в котором коэффициент пропорциональности принят равным единице. Размерность величины представляет собой произведение основных физических величин, возведенных в соответствующие степени

dimQ = LαMβNγIη, (2.2)

гдеL, M, N, I – условные обозначения основных ФВ, а α, β, γ, η – вещественные числа.

Показатель размерности физической величины – показатель степени, в которую возведена размерность основной физической величины, входящей в размерность производной физической величины. Показатели размерности могут принимать различные значения: целые или дробные, положительные или отрицательные.

Понятие "размерность" распространяется как на основные, так и на производные физические величины. Размерность основной величины по отношению к себе самой равна единице и не зависит от других величин, т. е. формула размерности основной величины совпадает с ее символом, например: размерность длины – L, размерность массы – M и т. д.

Чтобы найти размерность производной физической величины в некоторой системе величин, следует в правую часть определяющего уравнения этой величины вместо обозначения величин подставить их размерность. Так, например, подставив в определяющее уравнение скорости равномерного движения V = l/t вместо dl размерность длины L и вместо dt – размерность времени T, получим - dim Q = L/T = LT– 1.

Над размерностями можно производить следующие действия: умножение, деление, возведение в степень и извлечение корня.

Размерная физическая величина – физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю. Если все показатели степени размерности величин равны нулю, то такая физическая величина называется безразмерной. Безразмерными являются все относительные величины, т. е. отношение одноименных величин. Например, относительная плотность r – безразмерная величина. Действительно, r = L-3M/L-3M = L0M0 = 1.

Значение физической величины может быть истинными, действительными и измеренными. Истинное значение ФВ (истинное значение величины) – значение физической величины, которое в качественном и количественном отношениях идеальным образом отражало бы соответствующее свойство объекта. Истинное значение определенной величины существует, оно постоянно и может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений. Для каждого уровня развития измерительной техники мы можем знать только действительное значение физической величины – значение физической величины, найденное экспериментальным путем и настолько близкое к истинному значению, что для поставленной измерительной задачи может его заменить. Измеренное значение физической величины – значение физической величины, полученное с применением конкретной техники.

В практической деятельности необходимо проводить измерения различных физических величин. Разнообразные проявления (количественное или качественное) любого свойства образуют множества, отображение элементов которых на упорядоченное множество чисел или в более общем случае условных знаков образуют шкалы измерения этих свойств.

Шкала физической величины – это упорядоченная совокупность значений ФВ, служащая исходной основой для измерений данной величины. В соответствии с логической структурой проявления свойств различают пять основных типов шкал измерений: наименований, порядка, интервалов, отношений.

Шкала наименований (шкала классификации). Такие шкалы используются для классификации эмпирических объектов, свойства которых проявляются только в отношении эквивалентности, эти свойства нельзя считать физическими величинами, поэтому шкалы такого вида не являются шкалами ФВ. Это самый простой тип шкал, основанный на приписывании качественным свойствам объектов чисел, играющих роль имен. В шкалах наименований, в которых отнесение отражаемого свойства к тому или иному классу эквивалентности осуществляется с помощью органов чувств человека, — это наиболее адекватный результат, выбранный большинством экспертов. При этом большое значение имеет правильный выбор классов эквивалентной шкалы - они должны различаться наблюдателями, экспертами, оценивающими данное свойство. Нумерация объектов по шкале наименований осуществляется по принципу: "не приписывай одну и ту же цифру разным объектам". Числа, приписанные объектам, могут быть использованы только для определения вероятности или частоты появления данного объекта, но их нельзя применять для суммирования или других математических операций. Поскольку данные шкалы характеризуются только отношениями эквивалентности, то в них отсутствуют понятия нуля, "больше или "меньше" и единицы измерения. Примером шкал наименований являются широко распространенные атласы цветов, предназначенные для идентификации цвета.

Если свойство данного эмпирического объекта проявляет себя в отношении эквивалентности и порядка по возрастанию или убыванию количественного проявления свойства, то для него может быть построена шкала порядка (рангов). Она является монотонно возрастающей или убывающей и позво­ляет установить отношение больше/меньше между величинами, характеризующими указанное свойство. В шкалах порядка суще­ствует или не существует нуль, но принципиально нельзя ввести единицы измерения, так как для них не установлено отношение пропорциональности и соответственно нет возможности судить, во сколько раз больше или меньше конкретные проявления свой­ства.

В случаях, когда уровень познания явления не позволяет точно установить отношения, существующие между величинами данной характеристики, либо применение шкалы удобно и достаточно для практики, используют условную (эмпирическую) шкалу по­рядка. Это шкала ФВ, исходные значения кото­рой выражены в условных единицах, например, шкала вязкости Энглера, 12-балльная шкала Бофорта для измерения силы морс­кого ветра.

Шкалы интервалов (шкала разностей) являются дальнейшим развитием шкал порядка и применяются для объек­тов, свойства которых удовлетворяют отношениям эквивалентно­сти, порядка и аддитивности. Шкала интервалов состоит из оди­наковых интервалов, имеет единицу измерения и произвольно выбранное начало — нулевую точку. К таким шкалам относится летосчисление по различным календарям, в которых за начало отсчета принято либо сотворение мира, либо Рождество Христо­во и т.д. Температурные шкалы Цельсия, Фаренгейта и Реомюра также являются шкалами интервалов.

Шкала отношений описывают свойства эмпири­ческих объектов, которые удовлетворяют отношениям эквивален­тности, порядка и аддитивности (шкалы второго рода — аддитив­ные), а в ряде случаев и пропорциональности (шкалы первого рода — пропорциональные). Их примерами являются шкала мас­сы (второго рода), термодинамической температуры (первого рода).

В шкалах отношений существует однозначный естественный критерий нулевого количественного проявления свойства и еди­ница измерений. С формальной точки зрения шкала отношений является шкалой интервалов с естественным началом отсчета. К значениям, полученным по этой шкале, применимы все ариф­метические действия, что имеет важное значение при измере­нии ФВ. Например, шкала весов, начинаясь с нулевой отметки, может быть проградуирована по-разному, в зависимости от требуемой точности взвешивания.

Абсолютные шкалы. Под абсолютными понимают шкалы, обладающие всеми признаками шкал отношений, но дополни­тельно имеющие естественное однозначное определение едини­цы измерения и не зависящие от принятой системы единиц измерения. Такие шкалы соответствуют относительным величинам: ко­эффициенту усиления, ослабления и др. Для образования многих производных единиц в системе СИ используются безразмерные и счетные единицы абсолютных шкал.

Отметим, что шкалы наименований и порядка называют не­метрическими (концептуальными), а шкалы интервалов и отноше­ний — метрическими (материальными). Абсолютные и метричес­кие шкалы относятся к разряду линейных. Практическая реализа­ция шкал измерений осуществляется путем стандартизации как самих шкал и единиц измерений, так и, в необходимых случаях, способов и условий их однозначного воспроизведения.