П О С Т О Я Н Н Ы Й Э Л Е К Т Р И Ч Е С К И Й Т О К

Процесс ориентации дипольных моментов или их появление под воздействием внешнего электрического поля, что приводит к возникновению электрического момента у каждого элемента объема диэлектрика, называется поляризацией диэлектриков.

Различают три вида такой поляризации:

1. Электронная или деформационная – заключается в возникновении индуцированных дипольных моментов атомов вследствие деформации электронных оболочек, т.е. смещении электронных орбиталей относительно ядер.

2. Ориентационная или дипольная – упорядочение в расположении существующих дипольных моментов.

3. Ионная – возникает в результате встречного смещения кристаллических подрешёток: состоящей из положительно заряженных ионы по полю, а образованной отрицательными ионами – против поля. Количественно поляризация характеризуется поляризованностью (вектором поляризации)– векторной величиной, определяемой как суммарный дипольный момент единицы объёма диэлектрика:

, (21)

где рi – дипольный момент одной молекулы; рv – суммарный дипольный момент всего диэлектрика.

Из опыта известно, что для большого класса диэлектриков (за исключением сегнетоэлектриков) поляризованность линейно зависит от напряжённости внешнего поля :

= χε, (22)

где – напряжённость электрического поля в точке, для которой определяется ; χ (хи) – диэлектрическая восприимчивость вещества;

χ – всегда положительная, безразмерная величина. Для большинства диэлектриков (твёрдых и жидких) χ составляет всего несколько единиц (хотя, например, для спирта χ ≈ 25, а для воды χ = 80).

 

Для установления количественных за­кономерностей поля в диэлектрике внесем в однородное внешнее электростатическое поле Е0 (создается двумя параллельными разноименно заряженны­ми плоскостями) пластинку из однородно­го диэлектрика, расположив ее перпендикулярно силовым линиям поля. Под действием поля диэлектрик поляризуется, т.е. происходит смещение зарядов: положительные смещаются по полю, отрицательные – против поля. В результате этого на грани диэлектрика, обращенной к отрицатель­ной плоскости, будет избыток положитель­ного заряда с поверхностной плотностью +σ, на левой – отрицательного заряда с поверхностной плотностью –σ. Эти не-скомпенсированные заряды, появляющие­ся в результате поляризации диэлектрика, называются связанными. Так как их по­верхностная плотность σ меньше плотно­

В результате поляризации на поверхности диэлектрика появляются связанные заряды (рис.). Вектор напряжённости поля связанных зарядов направлен внутри диэлектрика противоположно вектору напряжённости внешнего поля, вызвавшего поляризацию (рис.). Теперь, в соответствии с принципом суперпозиции, напряжённость поля внутри диэлектрика:

или . (23)

Напряжённость электрического поля связанных зарядов можно определить по формуле: , где σ´– поверхностная плотность связанных зарядов. Можно показать, что поверхностная плотность

связанных зарядов равна модулю вектора поляризованности диэлек-трика – σ´= Р. С учётом (13), подставив в (15) , получим: (24).

Откуда напряжённость результирующего поля внутри диэлектрика:

. (25)

Безразмерная величина ε = 1+χ называется диэлектрической проницаемостью среды. Из (17) видно, что диэлектрическая проницаемость количественно характеризует свойство диэлектрика поляризоваться и показывает, во сколько раз внешнее поле ослабляется данным диэлектриком.

 

 

 

Электрическим током называется любое упорядоченное дви-жение заряженных частиц. Ток в проводнике под воздействием электрического поля называется током проводимости. Количественной мерой этого процесса является скалярная величина, которая называется сила тока:

, (1)

 

где i – мгновенное значение силы тока в проводнике, dq – заряд, протекающего через его поперечное сечение за время dt. [I] = Kл/c = А.

Постоянным, называется электрический ток, сила и направление которого не меняются с течением времени.