Математическое ожидание случайной величины
Числовые характеристики случайных величин
Определение 1. Математическим ожиданием случайной величины x называется следующее число
Математическое ожидание называют еще средним значением величины и обозначают также через Мx. Заметим, что величину ak = Еxk, k > 0 называют начальным моментом (или просто моментом) порядка k случайной величины x. Для функции j(x) от случайной величины x (см. 2.3) математическое ожидание определяется так:
Для случайных величин, являющихся функциями f(x1, x2, …, xn) от случайных величин x1, x2, ..., xn математическое ожидание определяется так:
Рассмотримсвойства математического ожидания.
1. Если x постоянная величина, т.е. x = С с вероятностью 1, то Еx = С. Действительно, если x = С вероятностью 1, то по определению математического ожидания получаем Еx = С × 1 = С.
2. E(Cx)= С × Еx.
Это и последующие свойства докажем для дискретного случая.
Если x дискретная случайная величина со значениями аk и вероятностями p k = Р(x = аk), k = 1,2,..., то согласно пункту 2.3 Сx является дискретной случайной величиной со значениями Саk и теми же вероятностями pk, k = 1,2,... Тогда по определению математического ожидания получаем
и получаем требуемое.
4. Е(x + h) = Ex + Еh.
Пусть случайные величины x и h имеют следующие таблицы распределения:
и
Тогда
поскольку (см. 2.4.2)
где
Как следствие получаем
5. Если x и h независимые случайные величины, тогда
Пусть x и h случайные величины, введенные в свойстве 4. Как показано в 2.4.3 для независимых случайных величин x и h выполняются равенства