России в 1995 году

Таблица 6.5

Расчет кратких таблиц смертности

Гг.

Вероятностные таблицы смертности (чаще

Стандартизация общих коэффициентов смертности мужского и

Таблица 6.4

женского на­селения России в 1995 г. косвенным методом

 

Воз­растные группы (лет) Численность населения на середину 1995 г. (тыс. человек) Рх Возрастные коэффициенты смертности стандарт-населения в промилле mx0 Условное число умерших Рх х тх
Мужчины Женщины Мужчины Женщины
0¾4 4,1
5—9 0,6
10—14 0,5
15—19 1,6
20—24 2,7
25—29 3,4
30—34 4,6
35—39 6,3
40¾44 8,9
45—49 12,3
50—54 17,1
55—59 21,4
60—64 29,7
65—69 39,2
70—74 51,3
75—79 78,2
80—84 123,2
85 и старше 214,4
Всего 15,0

 

Во-вторых, считаю необходимым повторно предупредить читателя о том, что сама по себе величина стандартизованных коэффициентов носит условный характер, зависит от выбранного стандарта (стандарт-населе­ния), поэтому она не имеет никакого самостоятельного значения. Име­ет значение только разницамежду стандартизованными коэффициента­ми, которая в идеале остается неизменной при любом стандарте (небольшая разница в результатах может быть следствием грубости расче­та, округлений цифр либо не очень удачного выбора стандарт-населения, если оно по своим характеристикам очень сильно отличается от сравнивае­мых населений).

называемые просто таблицами смертности)

Это самый совершенный инструмент для анализа состояния и тенденций уровня смертности. Они представляют собой систему взаимосвязан­ных показателей, характеризующих изменение вероятности смерти по мере увеличения возраста людей, или, напротив, изменение вероятности дожития до некоторого возраста, а также среднюю продолжительность жизни некоторого поколения родившихся. Иначе говоря, таблицы смерт­ности описывают последовательность и скорость вымирания поколения.

Показатели (колонки) таблиц смертности:

lx — числа доживающих до возраста «х» лет;

dxчисла умирающих в возрасте «х» лет (т.е. в возрастном интервале от «х» до «х + 1»);

qxвероятность умереть в возрасте «х» (т.е. в возрастном интервале от «х» до «х + 1»);

рх вероятность для доживших до возраста «х» дожить и до следующе­го года возраста «х + 1»;

Lxчисла живущих в возрасте «x» (в возрастном интервале от «х» до «х + 1»;

Тхчисла живущих в возрасте «х» лет и старше (число человеко-лет предстоящей жизни для данного поколения);

е0средняя ожидаемая продолжительность жизни для новорожденных;

ехсредняя ожидаемая продолжительность жизни для достигших возраста «х».

В таблицах смертности принимают первоначальную численность поколения (число родившихся, основание или корень таблицы смертности) не­изменной во времени и равной единице и прослеживают, как с переходом от возраста к возрасту, от 0 до предельного возраста (100 лет или 100 с небольшим) первоначальная совокупность поколения родившихся убывает в результате смерти от 1 до 0.

Отсюда следует, что в таблицах смертности все числа, кроме числа родившихся, равного 1, меньше 1, т. е. дроби. Чтобы избежать большого количества дробных чисел, число родившихся (основание таблицы) в практических расчетах принимают равным 100000 или 10000, в зависимости от желаемой значности (точности) расчетов. Но не менее 10000.

Различают таблицы полные и краткие. В полных таблицах возрастные интервалы равны одному году, в кратких — пяти годам. Целесообразно рассмотреть взаимосвязи показателей таблиц смертности на примере полных таблиц. В них с переходом от возраста «х» к возрасту «х + 1» число до­живающих lx будет последовательно уменьшаться на величину числа умирающих в возрасте «х», т.е. dx. Математически эта связь выглядит следующим образом:

Lx+1 = lx – dx (6.5.1)

Если проследить эту последовательность (порядок) вымирания поколения, начиная с основания таблицы смертности, то она будет выглядеть следу­ющим образом: l0 = 1 или 10000 или чаще 100000 – d0 = l1 – d1 = l2 – d2 = l3 и т.д. В общем виде эту последовательность можно записать так: lx+1 = lx – dx (для полных таблиц) и lх+п = lx – dx+n,где п — длина возрастного интервала.

Каждый родившийся рано или поздно умирает, и в конечном счете чис­ло умерших (из каждого поколения, численность которых мы определили заранее) составит l0, т. е. число родившихся, или

где w –1 — предельный возраст, до которого доживает последний человек из поколения родившихся.

Формула (6.5.1) может быть использована в различных перестановках, к примеру:

lx = lx+1 + dx; dx = lx – lx+1, и т.д.

Вероятность смерти в возрасте «х» (в возрастном интервале от «х» до «х+1») ¾ qxопределяется в соответствии с правилами теории вероятностей как отношение числа умирающих в возрасте «х» – dx к числу дожива­ющих до этого возраста, т.е. lz. В виде формулы эта связь выглядит так:

(6.5.2)

Из формулы хорошо видно, что вероятность смерти qx можно интерпре­тировать и как долю умирающих в возрасте «х» из числа доживающих до начала возрастного интервала «х».

Напротив, вероятность дожития до возраста «х + 1» — рх для тех, кто до­жил до возраста «х» (до начала возрастного интервала «х»), будет определяться как отношение числа доживающих до возраста «х + 1» к числу до­живших до возраста «х» (до начала возрастного интервала «х»). Запишем эту связь в виде формулы:

(6.5.3)

Отсюда можно так же, как и в предыдущей формуле, видеть, что вероятность дожития есть не что иное, как доля переживающих возраст «х» из числа доживающих до его начала.

Формулы (6.5.2) и (6.5.3) так же, как и (6.5.1), используются в виде различных преобразований, например: lx+1 = lxрх; dx = lxqxb ит. д.

Поскольку мы рассматриваем смертность, то в пределах одного возрастного интервала возможна только единственная альтернатива: либо пере­жить этот интервал и благополучно отметить следующий день рождения, либо, увы, не дожить до него. Иначе говоря, сумма вероятностей дожития до следующего возраста либо умереть, не дожив до него, равна единице, что можно изобразить в виде формулы:

qx + рх = 1. (6.5.4)

Эта простейшая формула оказывается, однако, очень полезной, так как, зная одну из двух вероятностей, всегда легко найти вторую (вычитанием из единицы).

Начав прослеживать закономерное уменьшение чисел доживающих с основания таблицы смертности, замечаем вскоре, что: l1 = l0p0.

Если основание таблицы l0 = 1, то, естественно, l0 в формуле можно опу­стить, и она примет вид: l1 = р0.

Далее, следуя той же логике: l2 = l1p1. Подставим вместо l1 его значение из предыдущей формулы (l1 = р0). Получим: l2 = р0 p1. Затем: l3 = l2р2 = p0p1p2 и т.д. Отсюда, кстати, видно, что число доживающих — нечто иное, как произведение вероятностей дожития, или, иначе говоря, оно само — тоже вероятность, вероятность для новорожденногодожить до возраста «х». В обобщенном виде эту связь можно записать и так:

lx = p0p1p3 x ………. x px-1. (6.5.5)

Поскольку в практических расчетах основание таблицы смертности принимается равным не 1, а 10000 и чаще всего 100000, то l0 опускать не приходится и формула (6.5.5) выражается в следующем виде:

lx = l0p0p1p2p3 x ………. x px-1.

Здесь, пожалуй, самое время сказать, что в таблицах смертности нет ни одного доживающего или умирающего. Вообще — ни одного человека. Одна смерть в чистом виде. Одни вероятности и доли. В этом их большое преимущество перед другими измерителями уровня смертности, посколь­ку при отсутствии человека нет и зависимости показателей таблиц смерт­ности от возрастной структуры населения. Наименования «числа дожива­ющих», «числа умирающих» — опять же условные наименования, не более того.

 

Рис. 6.2. Вероятность умереть qx для мужского и женского населения СССР, 1986—1987 гг.

 

Последовательность изменений чисел доживающих lx графически представляет собой линию дожития,характеризующую порядок вымирания поколения.Чем ниже уровень смертности, чем большая доля ро­дившихся (поколения) доживает до старших возрастов, тем более выпуклой формы будет кривая дожития (см. рис.6.4).

Числа живущих.В таблицах смертности числа доживающих показывают долю остающихся в живых к началу каждого следующего года возра­ста, то есть к возрасту «x» лет остается в живых часть поколения lx, к возра­сту «х + 1» — часть lx+1, и т.д.

Однако на самом деле при переходе от одного возраста к следующему численность поколения убывает непрерывно, поэтому число живущих в возрасте «х» есть некоторая средняя величина между значениями чисел доживающих lx и lx+1. Если разбить каждый год возраста на предельно малые промежутки времени и с помощью дифференциального исчисления определить средние величины живущих в каждом таком мельчайшем интерва­ле, то изменение чисел живущих определяется путем интегрирования та­ких средних. В реальности интегрирование заменяется суммированием.

 

 

       
 
dx
 
   

 

 


 

Рис. 6.3. Число умирающих dx мужчин и женщин СССР,

На практике обычно мы не располагаем значениями чисел доживающих lx,для более дробных возрастных интервалов, чем год. Поэтому для средних возрастов, в которых число доживающих изменяется почти пря­молинейно, число живущих рассчитывается как обычная средняя арифме­тическая величина из двух чисел доживающих, на начало и конец возраст­ного интервала, т. е.:

(6.5.6)

На тех же участках кривой дожития, где ее кривизна значительна, число живущих определяют по формуле, учитывающей эту кривизну:

(6.5.7)

где dxчисло умирающих в таблицах смертности; тхвозрастные коэффициенты смертности того же населения, для которого строились таблицы смертности.

Обычно по формуле (6.5.7) рассчитывают число живущих для всех уча­стков кривой дожития, кроме самых первых детских возрастов, для которых используются специальные формулы (мы познакомимся с ними позд­нее, при построении краткой таблицы смертности).

Средняя ожидаемая продолжительность жизни.Число живущих можно трактовать также и как число человеко-лет, прожитых всем поколением родившихся в интервале возраста «x». Тогда, следовательно,

Рис. 6.4. Линии дожития lx мужского и женского населения СССР, 1926—1927, 1958—1959, 1986—1987 гг.

 

поколе­ние родившихся l0 проживет на первом году жизни (т.е. в возрасте 0 лет) L0 лет, на 2-м году — Li лет, на 3-м — l2 лет и т.д., а всего:

(6.5.8)

 

где Т0 число человеко-лет, которое предстоитпрожить данному поколению родившихся.

Если эту сумму человеко-лет разделить на первоначальную численность поколения, т.е. на число родившихся l0, то получим очень важный социальный показатель, который называется показателем средней ожидае­мой продолжительности жизни.

Средняя ожидаемая продолжительность предстоящей жизни[123] — это число лет, которое проживет один человек в среднем из данного поколения родившихся при условии, что на всем протяжении жизни это­го поколения смертность в каждой возрастной группе будет оставать­ся неизменной на уровне расчетного периода.

Продолжительность предстоящей жизни рассчитывается для новорожденных (или иначе говорят — ожидаемая продолжительность жизни при рождении) идля достигших некоторого возраста «х».

В виде формул расчет обеих средних можно представить следующим образом.

Для новорожденных:

(6.5.9)

Поскольку при расчете средней продолжительности предстоящей жизни для новорожденных основание таблицы смертности l0 = 1, его можно опустить, и окончательно этот показатель выражается в виде суммы чисел живущих в жизненном интервале от рождения поколения до его полного исчезновения.

Для людей, достигших определенного возраста «x», расчет отличается лишь тем, что число доживающих до возраста «х», в знаменателе дроби уже меньше 1 и его опускать нельзя.

(6.5.10)

Для анализа состояния и тенденций уровня смертности чаще всего бывает достаточным использование кратких таблиц смертности, т.е. по пяти­летним возрастным интервалам. Для их построения необходимо распола­гать пятилетними возрастными коэффициентами смертности или данными для расчета таких коэффициентов. Обычно достаточно рассчитать лишь одну колонку таблиц, lx , qx или px , а все остальные колонки, кроме Lx , рас­считываются на основе взаимосвязей показателей таблиц смертности, представленных выше.

Для перехода от возрастных коэффициентов смертности тх к вероятностям смерти qx используется обычно одна из двух формул:

(6.5.11)

 

(6.5.12)

где qxвероятность смерти в возрасте «х»; тхвозрастной коэффициент смертности; n — длина возрастного интервала.

Все остальные формулы показаны выше.

Построим для примера краткие таблицы смертности мужского населения России за 1995 г. и рассмотрим алгоритм расчета (см. таблицу 6.5).

1 . Из двух методов расчета по формулам (6.5.10) и (6.5.1 1) выберем вто­рой метод — по показательной функции, потому, что она лучше, чем пер­вая, учитывает кривизну изменения чисел доживающих lx. При этом вмес­то колонки вероятностей смерти qx будем рассчитывать колонку ее дополнения до единицы, т.е. вероятность дожития до следующего возраста, px. Таким путем мы избежим большого числа вычитаний из единицы.

2. Но сначала нужно возрастные коэффициенты смертности разделить на 1000 (т.е. перевести их из промилле в доли единицы) и перемножить на длину соответствующих возрастных интервалов. Для первого возрастного интервала 0 лет множитель будет равен 1, для второго — 1 — 4 года — 4, для остальных интервалов — 5.

3. Затем, возводя основание натурального логарифма «е» в отрицательную степень, равную произведению возрастного коэффициента смертно­сти на длину возрастного интервала, находим значения колонки вероятно­стей дожития px (колонка 3 в таблице 6.5).

4. Следующая колонка — чисел доживающих «lx». Первое значение числа доживающих для возраста 0 лет — основание таблицы смертности 100000 (константа, которую всегда нужно помнить). Умножив 100000 на число доживающих p0, получаем число доживающих l1, умножив l1 на p1, получаем l2, и так — все значения колонки чисел доживающих до возраста «85 лет и старше».

5. Затем рассчитываем значения колонки dx как разность между соседними числами доживающих, т.е. 100000 – l0 = d0; l1 – l2 = d1, и т.д.

6. Далее рассчитываем числа живущих. Для всех возрастных интервалов, кроме первых двух ранних детских, числа живущих рассчитываются по формуле Lx = dx / тх. Для первых двух возрастных интервалов — 0 и1—4 — числа живущих определяются иначе ввиду резкой кривизны изменения линии дожития на этом участке. Так число живущих в возрасте 0 лет определяется уравнением L0 = l0 - 2 / 3dx . Число живущих в следующем детском возрастном интервале 1—4 года определяется из следующего уравнения 4L1 = 1,704l1 + 2,533l5 - 0,237l10.Число живущих в так называемом открытом возрастном интервале — 85 лет и старше — определяется по формуле L85+ = l85 / m85+.Поскольку все дожившие до 85 лет раньше или по­зже умрут после этого возраста, d85+ = l85.

Расчет таблиц смертности мужского населения