Органические оболочки, покрывающие эмаль зуба.

МИКРОФЛОРА ЗУБНОГО НАЛЕТА

Лекция 4

1. Краткие сведения о строении твердых тканей зуба. 2. Органические оболочки, покрывающие эмаль зуба. 3. Состав зубного налета. 4. Динамика образования зубного налета. 5. Факторы, влияющие на образование зубного налета. 6. Механизмы образования зубного налета. 7. Физические свойства зубного налета. 8. Микроорганизмы зубного налета. 9. Кариесогенность зубного налета.

1. Краткие сведения о строении твердых тканей зуба.Твердая часть зуба состоит из эмали, дентина и цемента (рис. 1).

Дентин составляет основную часть зуба. Коронки зубов покрыты эмалью — самой твердой и прочной тканью человеческого организма. Корень зуба покрыт тонким слоем костеподобной ткани, называемой цементом, и окружен надкостницей, через которую происходит питание зуба. От цемента к надкостнице идут волокна, образующие так называемую связку зуба (периодонт), которая прочно укрепляет зуб в челюсти. Внутри коронки зуба имеется полость, заполненная рыхлой соединительной тканью, называемой пульпой. Эта полость продолжается в виде каналов в корень зуба.

Поверхность эмали покрыта органическими оболочками, вследствие чего при исследовании в электронном микроскопе она имеет сглаженный рельеф; тем не менее встречаются выпуклые и вогнутые участки, которые соответствуют окончаниям призм (мельчайшими структурными единицами эмали являются кристаллы апатитоподобного вещества, формирующие эмалевые призмы). Именно на этих участках начинают впервые скапливаться микроорганизмы или могут задерживаться пищевые остатки. Даже механическая очистка эмали зубной щеткой не способна полностью удалить с ее поверхности микроорганизмы.

Рис. 1. Строение зуба:

1 — коронка;

2 — корень;

3 — шейка;

4 — эмаль;

5 — дентин;

6 — пульпа;

7 — слизистая оболочка десны;

8 — периодонт;

9 — костная ткань;

10 — отверстие верхушки корня.

На поверхности зубов часто можно наблюдать зубной налет (ЗН), который представляет собой белую мягкую субстанцию, локализующуюся в области шейки зуба и на всей его поверхности. Пелликула, лежащая под слоем зубного налета и представляющая собой тонкую органическую пленку, является структурным элементом поверхностного слоя эмали. Пелликула образуется на поверхности зуба после его прорезывания. Считается, что она является дериватом белково-углеводных комплексов слюны. При электронной микроскопии пелликулы обнаружены три слоя и характерный признак — зубчатый край и пиши, которые представляют собой вместилища для бактериальных клеток. Толщина суточной пелликулы — 2—4 мкм. Ее аминокислотный состав является чем-то средним между составом зубного налета и преципитата слюнного муцина. В ней много глутаминовой кислоты, аланина и мало серосодержащих аминокислот. В составе пелликулы обнаружено большое количество аминосахаров, которые являются производными клеточной стенки бактерий. В самой пелликуле бактерий не отмечается, но в нее входят компоненты лизированных бактерий. Возможно, образование пелликулы является первоначальной стадией возникновения зубного налета. Еще одна органическая оболочка зуба — кутикула (редуцированный эпителий эмали), которая после прорезывания зуба теряется и в дальнейшем существенной роли в физиологии зуба не играет. Кроме того, слизистую оболочку полости рта и зубы покрывает тонкая пленка муцина, выделяющегося из слюны.

Таким образом, на поверхности эмали зуба отмечаются следующие образования:

кутикула (редуцированный эпителий эмали);

пелликула;

зубной налет;

пищевые остатки;

муциновая пленка.

Предложена следующая схема образования приобретенных поверхностных структур зуба: после прорезывания зубов поверхность эмали подвергается воздействию слюны и микроорганизмов. В результате эрозивной деминерализации на поверхности эмали образуются ультрамикроскопические канальцы, которые проникают в эмаль на глубину 1—3 мкм. Впоследствии канальцы наполняются нерастворимой белковой субстанцией. Вследствие преципитации слюнных мукопротеинов, а также адгезии и роста, а затем разрушения микроорганизмов, на поверхностной кутикуле образуется более толстый органический, в различной степени минерализованный слой пелликулы.

Благодаря местным условиям микробы инвазируют эти структуры и размножаются, что приводит к образованию мягкого ЗН. Минеральные соли откладываются на коллоидной основе ЗН, сильно изменяя соотношения между мукополисахаридами, микроорганизмами, слюнными тельцами, сгущенным эпителием и остатками пищи, что в конечном счете приводит к частичной или полной минерализации ЗН. Когда начинается его интенсивная минерализация, может образовываться зубной камень, который возникает путем импрегнации ЗН кристаллами фосфата кальция. Время, необходимое для отвердевания мягкой матрицы — около 12 дней. То, что минерализация началась, становится очевидным уже через 1—3 дня после образования налета.

3. Состав зубного налета.С помощью биохимических и физиологических исследований установлено, что ЗН — это скопление инкорпорированных в матрицу колоний микроорганизмов, обитающих в полости рта и на поверхности зубов.

В исследованиях с использованием сканирующего электронного микроскопа показано, что ЗН состоит исключительно из микроорганизмов с незначительным включением бесструктурного вещества органической природы. Из органических компонентов в ЗН определены белок, углеводы, ферменты. Его аминокислотный состав отличается от такового муцина и пелликулы, а также слюны. Наиболее полно изучены углеводные компоненты ЗН (гликоген, кислые мукополисахариды, гликопротеины).

Существует гипотеза, что ферменты ЗН играют важную роль в кариозном процессе. Химический состав ЗН в значительной степени варьирует на различных участках полости рта и у разных людей в зависимости от возраста, употребления в пищу сахара и т.д. В зубном налете обнаружены кальций, фосфор, калий, натрий. Около 40% сухой массы неорганических веществ находится в нем в виде оксиапатита. Содержание мик-роэлементов в ЗН чрезвычайно вариабельно и изучено недостаточно (железо, цинк, фтор, молибден, селен и др.). Предположения о механизмах кариестормозящего действия микроэлементов основываются на их влиянии на активность ферментов бактерий, а также на соотношении различных групп микроорганизмов. Определенные микроэлементы (фтор, молибден, стронций) обусловливают меньшую восприимчивость зубов к кариесу, воздействуя на экологию, состав и обмен ЗН; селен, наоборот, увеличивает возможность возникновения кариеса. Одним из наиболее важных, влияющих на биохимию ЗН компонентов является фтор. Существует три пути включения фтора в ЗН: первый — через образование неорганических кристаллов (фторапатита), второй — через образование комплекса с органическими субстанциями (с белком матрицы налета); третий — проникновение внутрь бактерий. Интерес к метаболизму фтора в ЗН связан с противокариозным действием этого микроэлемента. Фтор, во-первых, влияет на состав ЗН, во-вторых, оказывает воздействие на растворимость эмали, в-третьих, подавляет работу ферментов бактерий, входящих в состав зубного налета.

Неорганические вещества ЗН имеют непосредственное отношение к минерализации и образованию зубного камня.

4. Динамика образования зубного налета.ЗН начинает накапливаться уже через 2 часа после чистки зубов. В течение 1-х суток на поверхности зуба преобладает кокковая флора, после 24 часов — палочковидные бактерии. Через 2 суток на поверхности ЗН обнаруживаются многочисленные палочки и нитевидные бактерии (рис. 2).

По мере развития ЗН изменяется его микрофлора по типу дыхания. Первоначально образованный налет содержит аэробные микроорганизмы, более зрелый — аэробные и анаэробные бактерии.

Определенную роль в формировании ЗН играют клетки слущенного эпителия, которые прикрепляются к поверхности зуба в течение часа после ее очищения. Количество клеток значительно увеличивается к концу суток. Далее эпителиальные клетки адсорбируют на своей поверхности микроорганизмы. Также установлено, что образованию ЗН и его прилипанию к эмали в значительной мере способствуют углеводы.

Наиболее важную роль в образовании ЗН играют S.mutans, активно формирующие его на любых поверхностях. Но в этом процессе есть определенная последовательность. В экспериментальных условиях показано, что к чистой поверхности зуба сначала прилипает S.salivarius, а затем адгезируется S.mutans и начинает размножаться. При этом S.salivarius очень быстро исчезает из зубного налета. На формирование матрицы ЗН влияют ферменты бактериального происхождения, например нейраминидаза, участвующая в

расщеплении гликопротеинов до углеводов, а также в полимеризации сахарозы до декстрана-левана.

Рис. 2. Микроорганизмы на поверхности зубного налета (электронограмма).

В слюне обнаруживаются IgA, IgM, IgG, амилаза, лизоцим, альбумин и другие белковые субстраты, которые могут участвовать в образовании ЗН. В пелликуле, как правило, содержатся все классы иммуноглобулинов (А, М, G), тогда как в ЗН чаще всего выявляются IgA и IgG (однако доля участия [gA в механизме образования ЗН очень небольшая: всего лишь около 1% IgA участвуют в этом процессе, еще меньше участие IgG). Установлено, что иммуноглобулины покрывают зуб и бактерии, которые могут прилипать к пелликуле зуба. Бактерии ЗН могут покрываться антителами, поступающими из слюны или из жидкости десневого желобка.

Активно изучается роль sIgA в процессе образования зубного налета. Он обнаружен в пелликуле в биологически актином состоянии в большом количестве. По-видимому, slgA может играть двоякую роль при образовании зубного налета. Во-первых, слюнной slgA может снижать адгезию бактерий к эмали и таким образом сдерживать образование ЗН, а затем и зубных бляшек. Во-вторых, slgA при определенных условиях способствует прилипанию индигенной флоры к гидроксиапатиту эмали (особенно при синтезе S.mutans глюкана). Кроме того, показано, что S.mutans, покрытые sIgA и IgG, могут высвобождать связанные антитела в виде иммунных комплексов антиген — антитело (АГ+АТ) и таким образом снижать ингибиторный эффект антител на адгезию бактерий к гидроксиапатиту.

При изучении динамики роста ЗН в экспериментальных условиях обнаружено, что в течение первых 24 часов образуется пленка гомогенного вещества, свободного от бактерий, толщиной 10 мк. В последующие дни происходит адсорбция бактерий и их разрастание. Через 5 дней налет покрывает более половины коронки зуба и по количеству значительно превосходит первоначальный суточный ЗН. Наиболее быстро он накапливается на щечных поверхностях верхних жевательных зубов. Распространение ЗН по поверхности зуба происходит от межзубных промежутков и десневых желобков; рост колоний подобен развитию последних на питательной среде.

Наименее очищаемы проксимальные поверхности зубов.

5. Факторы, влияющие на образование зубного налета:

1) микроорганизмы, без которых ЗН не образуется;

2) углеводы (относительно большое количество зубного налета обнаружено у людей,

 

 

употребляющих много сахарозы);

3) вязкость слюны, микрофлора полости рта, процессы коагрегации бактерий, десквамация эпителия слизистой оболочки полости рта, наличие местных воспалительных заболеваний, процессы самоочищения.

 

6. Механизмы образования зубного налета.Существу ют три теории возникновения ЗН:

1) приклеивание эпителиальных клеток, инвазированных бактериями, к поверхности зуба с последующим ростом бактериальных колоний; коагрегация бактериальных попу-ляций;

2)преципитация внеклеточных полисахаридов, образованных стрептококками полости рта;

3)преципитация гликопротеинов слюны при деградации бактерий. В процессе преципитации белков слюны немаловажное значение отводят деятельности кислотообразующих бактерий и кальцию слюны.

7. Физические свойства зубного налета.ЗН устойчив к смыванию слюной и полосканию рта. Это объясняется тем, что сто поверхность покрыта слизистым полупроницаемым мукоидным гелем. Мукоидная пленка также в определенной мере препятствует нейтрализующему действию слюны на бактерии ЗН. Он нерастворим в большинстве реагентов и является в некоторой степени барьером, предохраняющим эмаль. Муцин слюны и слюнные тельца осаждаются на поверхности зуба и тормозят процесс реминерализации. Возможно, этот эффект связан с выработкой кислоты на поверхности эмали при расщеплении сахара или с синтезом больших количеств внутри- и внеклеточных полисахаридов бактериями ЗН.

8. Микроорганизмы зубного налета.ЗН — это скопление микроорганизмов разных видов, инкорпорированных в матрицу. В 1 мг вещества ЗН находится 500x10" микробных клеток.

 

Из них более 70% составляют стрептококки, 15% — вейллонеллы и нейссерии, остальная флора представлена лактобациллами, лептотрихиями, стафилококками, фузобактериями, актиномицетами, изредка дрожжеподобными грибами Candida albicans.

В микробиоценозе ЗН, по данным разных исследований, соотношения между бактериями следующие: факультативные стрептококки — 27%, факультативные дифтероиды — 23%, анаэробные дифтероиды — 18%, пептострептококки — 13%, вейллонеллы — 6%, бактероиды — 4%, фузобактерии — 4 %, нейссерии — 3%, вибрионы — 2%.

В налете также обнаружены шесть видов грибов.Микробная флора ЗН непостоянна как в количественном, так и в качественном отношении.

Так, преимущественно из микрококков состоит одно-, двухдневный ЗН, в то время как в 3—4-дневных образцах появляются (а с 5-го дня начинают преобладать) нитевидные формы.

Количество различных типов микроорганизмов в ЗН и слюне неодинаково. Так, в налете мало S.salivarius (около 1%), в то время как в слюне этих кокков много; в нем также примерно в 100 раз меньше, чем в слюне, лактобацилл.

Микроорганизмы ЗН лучше культивируются в анаэробных условиях, что

свидетельствует о низком напряжении кислорода в глубоких слоях налета. Питательные вещества для роста бактерий, по-видимому, поступают извне. Зубные ткани сами по себе не обеспечивают роста культуры микроорганизмов.

В ЗН большинство бактерий являются кислотообразующими. Имеются также протеолитические бактерии, но их активность относительно низка.

9. Кариесогенность зубного налета(В эпидемиологических исследованиях установлена высокая корреляция между большим количеством ЗН и развитием кариеса. У детей, имеющих повышенный индекс ЗН, рост индекса КПУ (К — число зубов, пораженных кариесом и его осложнениями, П — запломбированные, У — удаленные зубы) происходит в 3 раза быстрее, чем у детей с низким индексом ЗН). ЗН не образуется без микроорганизмов, поэтому его кариесогенность связывают с имеющимися в нем кариесогенными бактериями, вырабатывающими значительное количество кислот. Большинство бактерий в ЗН (и особенно кариесогенные) способны синтезировать йодофильные полисахариды, которые идентифицированы как внутриклеточные типы гликогена. При кариесе происходит размножение бактерий, вырабатывающих гиалуронидазу, которая, как известно, может активно влиять на проницаемость эмали. Кариесогенные бактерии зубного налета способны также синтезировать ферменты, расщепляющие гликопротеины. Установлено, что чем выше скорость образования ЗН, тем более выраженным кариесогенным действием он обладает.

При исследовании кариесогенности зубного налета было выделено большое количество стрептококков, актиномицетов, вейллонелл. Из стрептококков преобладали S.mutans и S.sanguis, а фузобактерий и лактобацилл почти не обнаруживалось.

Самую большую роль в развитии кариеса играет S.mutans. Установлено, что, как правило, кариес у детей развивается, если во флоре преобладает S.mutans, который выделяется в местах наиболее частой локализации кариеса (апроксимальные поверхности первых верхних премоляров). В настоящее время выделено пять серотипов S.mutans (a, b, с, d, e), которые неравномерно распространены среди населения земного шара. S.mutans избирательно адсорбируется на поверхности зубов. Особенно много этих бактерий в области фиссур и на проксимальных поверхностях зубов. В экспериментальных условиях показано, что если этот микроорганизм адгезировать на какую-либо одну поверхность зуба, то через 3—6 месяцев он распространяется и на другие и в то же время устойчиво фиксируется в первичном очаге. Установлено, что на тех участках, на которых впоследствии развиваются кариозные поражения, 30% микрофлоры составляют S.mutans: 20% в области поражения и 10% по периферии.

Также часто выделяется S.sanguis. В отличие от S.mutans, который локализуется в фиссурах, S.sanguis обычно адгезируется на гладких поверхностях зубов.

На флору ЗН оказывает влияние фтор, содержащийся в питьевой воде, к которому особенно чувствительны различные типы стрептококков и бактерии, синтезирующие йодофильные полисахариды. Для подавления роста бактерий необходимо около 30—40 мг/л фтора.

Таким образом, флора ЗН — это динамичная экологическая система, хорошо адаптированная к окружающей микрофлоре. Она способна быстро восстанавливаться после чистки зубов, проявляя высокую метаболическую активность, особенно в присутствии углеводов.

По данным разных авторов, количество бактерий в слюне колеблется от 43 млн. до 5,5 млрд. в 1 мл (в среднем 750 млн. в 1 мл). Микробная же концентрация в бляшках и десневой (гингивальной) борозде почти в 100 раз выше — примерно 200 млрд. клеток в 1 г пробы (в которой около 80% воды).

Видовой состав отдельных участков полости рта во многом зависит от окислительно-восстановительного потенциала (ОВП) и рН среды. В ротовой полости в определенных биотопах определяются различные значения окислительно-восста-новительного потенциала, допускающие рост аэробов, факультативных анаэробов и строгих анаэробов. В общем спинка языка и слизистые щек и неба являются аэробной средой с позитивным ОВП, поэтому в этих биотопах лучше поддерживается рост факультативных анаэробов. Десневая щель и прилегающие поверхности зубов (поверхности между зубами) имеют низкий (отрицательный) ОВП, поэтому в этих участках наиболее активно размножаются облигатные анаэробы.

Факультативные стрептококки и вейллонеллы составляют большую часть флоры слюны, в которую они попадают главным образом со спинки языка. S.salivarius постоянно вегетирует на языке, с которого смывается слюной, где также обнаруживается в высоких концентрациях. Нейссерии постоянно присутствуют в полости рта (часто в слюне), достигая 3—5% от выделяемого количества бактерий.

На зубах микроорганизмы образуют плотные массы в виде зубного налета, а затем формируются зубные бляшки. Эти образования содержат микробные сообщества, продукты их жизнедеятельности, а также компоненты слюны. Зубная бляшка развивается преимущественно на поверхностях, защищенных от механического трения, таких как область между двумя зубами, поддесневой карман, углубления или щели на жевательной поверхности.

Преобладающими микроорганизмами, выделяемыми из наддесневой бляшки, являются факультативные анаэробы, в частности актиномицеты и стрептококки. Грамотрицательные бактерии из групп Veillonella, Haemophilus и Bacteroides также выделяются регулярно, хотя и в меньших количествах. В здоровых поддесневых карманах общее число вырастающих бактерий относительно мало (103 — 10й КОЕ/карман). В под-десневых бляшках также преобладают актиномицеты и стрептококки. Анаэробные бактерии родов Porphyromonas и Prevotella часто выделяются из здорового десневого кармана и с бляшек в малых количествах. Кроме того, в бляшках и гингивальной щели могут быть обнаружены дифтероиды и вибрионы. Спирохеты характерны для гингивальной щели, где их количество составляет 1—5% от общего числа жизнеспособ-ных особей.

Слизистые оболочки (десна, небо, щеки и дно ротовой полости) колонизированы немногими микроорганизмами (от О до 25 КОЕ на эпителиальную клетку). Наибольшую долю составляют стрептококки, с преобладанием S.oralis и S.sanguis. Также выделяются с поверхности эпителиоцитов нейссерии, гемофильные палочки, вейллонеллы. Наивысшая плотность бактерий (100 КОЕ на эпителиальную клетку) обнаружена на поверхности языка. Язык с его сосочковой поверхностью обеспечивает места колонизации, защищенные от механического удаления. При исследовании этого биотопа ротовой полости постоянно выделялись стрептококки (S.salivarius и S.mitis), вейллонеллы. Другие группы включали пептострептококки, актиномицеты и бактероиды. Облигатные неспорообразующие анаэробы и спирохеты, которые тесно связаны с заболеваниями пародонта, всегда обнаруживались в малых количествах. Этот факт свидетельствует, что

язык является резервуаром микроорганизмов, которые имеют определенное значение в возникновении и развитии патологии пародонта.

4. Механизмы бактериальных взаимодействий в полости рта.Взаимоотношения в микробном (бактериальном) сообществе полости рта подчиняются тем же законам, которые действуют в любой открытой экологической системе. Различные (выгодные и антагонистические) взаимоотношения помогают в сохранении гомеостаза оральной флоры. При формировании микробного сообщества полости рта имеют значение следующие факторы:

1) скорость адгезии и колонизации;

2) конкуренция за источники питания;

3) изменение рН и ОВП среды;

4) выделение ингибиторов, влияющих на размножение. Как известно, чтобы поселиться в полости рта, бактерии

 

должны прикрепиться к зубам или к слизистой оболочке и за счет этого обеспечить себе устойчивость к току слюны. Адгезия опосредована адгезинами поверхности бактерий и рецепторами эпителиоцитов ротовой полости, структурами зубной эмали. Микробные адгезины состоят из полисахаридов, липотейхоевых кислот, а также могут быть представлены гликозилтрансферазами и белками, связанными с углеводами (лектины). Эти адгезины являются компонентами клеточной стенки или ассоциированы с такими структурами бактериальной клетки, как пили, фимбрии, фибриллы или капсулы. Рецепторами могут быть компоненты слюны (муцины, гликопротеины, амилаза, лизоцим, IgA, IgG, богатые пролином белки, статерин) или бактериальные компоненты (гликозилтрансферазы или глюканы), которые связаны с ротовыми поверхностями. В про-цессе адгезии происходят неспецифические физико-химические взаимодействия между бактериями и эпителиоцитами (например, липотейхоевые кислоты клеточной стенки бактерий связываются с отрицательно заряженными компонентами клеток хозяина через ионы кальция, водородные или гидрофобные связи). Большее значение в процессах адгезии, по-видимому, имеют специфические контакты, возможные при условии, что адгезины бактерий комплементарны рецепторам клеток хозяина или каким-то другим структурам. Для многих бактерий такие специфические адгезины изучены: пили или фимбрии A.viscosus и поверхностный антиген (белок Р1) S.mutans могут прикрепляться к богатым пролином белкам; A.viscosus и F.nucleatum могут взаимодействовать со статерином. Другая стратегия адгезии включает контакт лектиноподобного бактериального протеина с комплементарным углеводным рецептором, локализованным на гликопротеннах клетки хозяина. Такой тип взаимодействия можно затормозить in vitro с помощью добавления специфических углеводов. S.sanguis может прикрепляться к олигосахарам, содержащим сиаловую кислоту, низкомолекулярным муцинам слюны. Фимбрии (тип 2) актиномицетов присоединяются через бета-связь галактозы гликопротеина на поверхностях клеток эпителия.

Некоторые бактерии могут колонизировать поверхность слизистых или зубов, закрепляясь на поверхностных структуpax других бактерий, т.е. осуществляя коагрегацию. Стрептококки разных видов коагрегируются с актиномицетами, F.nucleatum, Veillonella, Haemophilus parainfluenzae. F.nucleatum связывается с Porphyromonas gingivalis, Haemophilus parainfluenzae и Treponema spp. Большинство

коагрегаций изучены в деталях на примерах штаммов бактерий разных родов (межродовая коагрегация). Внутривидовая наблюдается только у ротовых зеленящих стрептококков. Коагрегация — пример комменсализма и синергизма, которые возникают между микробными видами. Она делает возможной непрямую адгезию некоторых бактерий на эпителиоцитах и поверхности зубов и может иметь значение в развитии зубных бляшек, потому что способствует колонизации бактерий, неспособных прилипать к пелликуле.

Другим примером коагрегаций является синтез S.mutans внеклеточных полисахаридов из сахарозы. Эти полисахариды способствуют прикреплению бактерий к зубам и благоприятствуют увеличивающейся стабильности матрикса бляшки.

В полости рта могут быть обнаружены и многие другие примеры позитивных взаимодействий. Различные виды бактерий кооперируются в использовании субстратов, которые они не способны метаболизировать в одиночку. Так, F.nucleatum и Porphyromonas gingivalis синергически гидролизуют казеин, а деградация гликопротеина может включать синергическое действие различных бактерий, обладающих взаимно дополняющими видами гликозидазной и протеазной активности.

Развитие сложных пищевых цепей также способствует разнообразию и стабильности экосистем. Например, метаболизм углеводов стрептококками и актиномицетами порождает лактат, который может быть использован вейллонеллами. Предполагают, что продукция Н2О2 оральными стрептококками может ослаблять рост пародонтопатогенных бактерий.

Продукция молочной кислоты S.mutans снижает рН и тормозит рост S.oralis и S.sanguis, а также грамотрицательных неспорообразующих бактерий. Использование кислорода факультативными анаэробами понижает концентрацию О2 и ОВП до уровней, пригодных для колонизации слизистых строгими анаэробами.

Механизмы конкуренции и антагонизма среди резидентных бактерий могут помогать в сохранении экологического равновесия и предупреждать размножение некоторых резидентных бактериальных видов или заселение полости рта аллохтонными бактериями. Конкуренция за рецепторы адгезии, питательные вещества и продукция ингибиторов являются наиболее важными механизмами, которые регулируют бактериальную колонизацию, предупреждают чрезмерное размножение бактерий в полости рта, а также оказывают влияние на формирование родового состава различных биотопов полости рта.