Задача оптимизации записывается следующим образом.
Методика решения задач
Информационные технологии управления
МЕТОДИКА РЕШЕНИЯ ЗАДАЧ
СОДЕРЖАНИЕ
1. Линейная оптимизация..................................................................... 3
2. Регрессия. Метод наименьших квадратов................................... 10
3.Линейная регрессия........................................................................... 15
4. Транспортная задача........................................................................ 18
5. Анализ и сравнение инвестиционных проектов........................ 29
Литература.............................................................................................. 36
Контрольные задания........................................................................... 37
Линейная оптимизация
Планирование деятельности фирмы
ЗАДАЧА 1. Фирма производит две модели А и В сборных книжных полок. Их производство ограничено наличием сырья (досок) и временем машинной обработки. Для каждого изделия модели А требуется 3 кв. м досок, а для изделия модели В – 4 кв. м. Фирма может получать от поставщиков до 1700 кв. м досок в неделю. Для каждого изделия модели А требуется 12 мин машинного времени, а для изделия модели В – 30 мин. В неделю можно использовать 160 ч машинного времени. Сколько изделий каждой модели следует выпускать фирме в неделю, если изделие модели А приносит 2 доллара прибыли, а изделие модели В приносит 4 доллара прибыли?
Решение. Составим математическую модель. Введем обозначения: x - количество изделий модели А, а y - количество изделий модели В, выпускаемых в течение недели. Прибыль от реализации этих изделий равна 2x + 4y долларов. Эту прибыль нужно максимизировать. Функция, для которой ищется экстремум (максимум или минимум), называется целевой функцией.
Беспредельному увеличению количества изделий, а значит, и росту целевой функции препятствуют ограничения. Ограничено количество материала для производства полок. Отсюда следует ограничение 3x + 4y £ 1700.
На производство изделия А требуется 0.2 часа, а на производство изделия В требуется 0.5 часа. Время производства ограничено 160 часами, поэтому имеет место неравенство 0.2x + 0.5y £ 160.
Кроме того, количества изделий – неотрицательные числа, поэтому x ³ 0, y ³ 0.
Задача оптимизации записывается следующим образом.
2x + 4y ® max,
3x + 4y £ 1700,
0.2x + 0.5y £ 160,
x ³ 0, y ³ 0.
Решим сформулированную задачу линейного программирования в Excel. Создайте новую рабочую книгу, сохраните ее под именем Задача1. Дайте первому листу имя Полки.
Введите в ячейки рабочего листа Excel данные задачи (Таблица 1). Не вводите сразу нули в ячейки столбца В, о них речь пойдет ниже. Во избежание фатальных ошибок делайте все в соответствии с приведенным далее описанием. В ячейки А1, А2, А3, А5, А6, А8, А9 введите текст Переменные, Изделие А и т.д. Этот текст не нужен для поиска решения, но его наличие придает наглядность и удобство для автора и пользователя решения задачи. Текстом являются и формулы и числа, введенные в ячейки столбцов С и D. Поэтому эти текстовые формулы следует ввести, не ставя знака равенства = в первую позицию строки формул, и можно не использовать знака умножения *.
Таблица 1
A | B | C | D | |
Переменные | ||||
Изделие А | x | |||
Изделие В | y | |||
Целевая функция | ||||
Прибыль | 2x+4y | |||
Ограничения | ||||
Материал | 3x+4y | <=1700 | ||
Время изготовления | 0.2x+0.5y | <=160 |
Ячейкам В2 и В3 присвойте имена x и y. Для этого щелкните на ячейке В2, затем на поле Имя строки ввода и редактирования и вместо В2 введите латинскую букву х и обязательно нажмите клавишу Enter. Затем щелкните на ячейке В3 и на поле Имя строки ввода и редактирования и вместо В3 введите латинскую букву у и обязательно нажмите клавишу Enter. После этого введите начальные значения переменным х и у. Для этого снова выделите ячейку В2 (или х) и введите в строку формул =0 , нажмите клавишу Enter. Аналогичные операции проделайте для ячейки В3. Операции присвоения имен переменным и задания их начальных значений (заполнить поле имени и строку формул) для каждой из ячеек можно было произвести за один прием.
Введите, наконец, настоящие формулы, соблюдая синтаксис программы Excel. Сначала в ячейку В6 введите формулу целевой функции (прибыли). Для этого выделите эту ячейку, введите в нее (или в строку формул) следующие символы: =2*х+4*у и нажмите клавишу Enter. Аналогично в ячейки В9 и В10 введите формулы =3*х+4*у и =0.2*х+0.5*у.
Только после этого, если все сделано правильно, в ячейках В6, В9 и В10 должны появиться нули, то есть значения целевой функции и выражений, задающих ограничения задачи линейного программирования, для начальных значений переменных х=0 и у=0. При появлении в ячейке набора символов типа #ССЫЛКА! или сообщения об ошибке проверьте правильность всей введенной информации во всех ячейках столбца В.