Моделирование

Понятие «модель» возникло в процессе опытного изучения мира, а само слово в переводе с латинского означает мера, образ, способ. Первоначально модели активно использовались в строительстве, затем на моделях стали изучать течение водяных потоков, при строительстве плавательных средств, инженерных сооружений. Сегодня моделирование превращается в один из универсальных методов познания, применяемых во всех современных науках.

Научной основой моделирования служит теория аналогии. Основные виды качественной аналогии – химическая, физическая, кибернетическая. Например, физическая аналогия – это подобие при наличии физического аналога, а константы подобия – безразмерные величины, результат же исследования предполагает раскрытие физического смысла самих уравнений. Все эти виды объединяются понятием обобщенной аналогии – абстракцией, которая выражает особого рода соответствие между сопоставляемыми объектами, между моделью и прототипом.

Основным видом количественной аналогии является понятие математической аналогии. Это аналогия формы уравнений и аналогия соотношений между переменными в уравнениях оригинала и модели. Частные случаи математической аналогии – геометрическая (подобие пространственных пропорций частей объекта, подобие геометрических образов), временная (подобие функции времени, при котором константа подобия показывает, в каком соотношении к ней находятся такие параметры, как период, задержка).

Вместе с тем, следует четко усвоить, что аналогия – это не модель. Аналогия - это объективная, научная основа моделирования. А само моделирование является методологией эксперимента.

Моделирование – это метод исследования на модели, т.е. на аналогах (схемах, структурах, знаковых системах) определенных фрагментов действительности, которые называются оригиналами. Модель – это, прежде всего то, с чем сравнивают. Главное, чтобы между моделью и оригиналом было сходство в каких-то физических характеристиках, или в структуре, или в функциях. Существуют различные виды моделирования: предметное (прямое) и знаковое, а также информационное, компьютерное, математическое, математико-картографическое, молекулярное, цифровое, логическое, психолого-педагогическое, статистическое, экономико-математическое, эволюционное и другие. Такое разнообразие указывает на достаточно высокую степень эффективности моделирования в разных науках.

Предметным называется моделирование, в ходе которого исследование ведется на модели, воспроизводящей определенные физические, геометрические и прочие характеристики оригинала. Предметное моделирование используется как практический метод познания.

При знаковом моделировании моделями служат схемы, чертежи, формулы, предложения естественного или искусственного языка. Поскольку действия со знаками есть одновременно действия с некоторыми мыслями, то всякое знаковое моделирование по своей сути является моделированием мысленным.

Исследование мысленных моделей связано с применением гипотетико-дедуктивного метода, потому что модель является некоторым возможным, предположительным (гипотетическим) вариантом оригинала, и этот вариант можно проверить с помощью вытекающих из него следствий.

Таким образом, моделирование является методом опосредованного оперирования объектом, в ходе которого исследуется непосредственно не сам интересующий нас объект, а некоторая промежуточная вспомогательная система (естественная или искусственная), которая:

-во-первых, находится в некотором объективном соответствии с познаваемым объектом;

-во-вторых, подобного рода система способна в ходе познания замещать на известных этапах и в определенных отношениях изучаемый объект;

-в-третьих, система может давать в процессе ее исследования полезную информацию об интересующем нас объекте.

 

Рассмотрим, используя учебное пособие О.Е.Акимова, (Акимов О.Е. Естествознание: Курс лекций. – М.: ЮНИТИ-ДАНА, 2001. – 639с.) операцию моделирования. Обратимся к разделу динамики, где используют три типа модели – материальная точка, абсолютно твердое тело и сплошная среда.

Под материальной точкой понимают тело конечной массы, пространственные размеры и внутренняя структура которого не принимаются во внимание. Однако на практике чаще встречаются более сложные случаи, когда механическую систему нельзя представить в виде одной изолированной точки, так как требуется, например, учитывать вращательный моменты, который в свою очередь зависит от геометрических параметров тела и распределения масс внутри системы. В таком случае прибегают к модели абсолютно твердого тела, которая состоит из конечной совокупности жестко связанных материальных точек. Изучение динамики абсолютно твердого (т.е. совершенно недеформируемого в процессе движения) тела начинается с рассмотрения геометрии масс. Затем производится анализ возникающих сил и, наконец, рассчитывается траектория движения всей механической системы. Подобные задачи возникают, например, при рассмотрении движения Луны относительно Земли, которое существенным образом зависит от движения Земли относительно Солнца, или вращения коленчатого вала двигателя внутреннего сгорания, которое зависит от сопротивления поршней.

Третья модель механической системы – сплошная среда – является естественным расширением модели твердого тела, когда условие абсолютной жесткости между материальными точками нарушается, а их число становится бесконечным. Таким образом, сплошной средой считают деформируемое твердое тело, жидкость, газ, т.е. три основные фазы вещества. Известно и четвертое состояние вещества – плазма, которая также описывается при помощи модели сплошной среды. Сплошная среда в реальных условиях состоит из большого числа частиц – молекул. Молекулы газа и жидкости находятся в непрерывном хаотическом движении. Молекулярно-кинетическая теория ставит перед собой цель изучения как раз этой формы движения материи. При этом она пользуется статистическим методом, анализируя не движения отдельно взятых молекул, а целых их ансамблей. Отсюда происходит и другое название указанной теории – статистическая физика. Для нее, например, давление газа и температура жидкости есть уже интегральные характеристики движения большого числа материальных частиц, движущихся в абсолютной пустоте по случайным траекториям. Молекулярно-кинетическая теория стала основой современной атомной физики и физики элементарных частиц.

В 1950-х годах моделирование успешно стали применять в социально-экономических процессах (работы Дж.Форрестера по экономическому развитию локальных территорий и мировых экономических процессов), а впоследствии применительно к глобальным общественно-политическим и экологическим процессам, проблемам освоения ближнего и дальнего космоса.

Моделирование в истории науки

Моделирование издавна применялось в познании; еще античный мыс­литель Эмпедокл пытался объяснить функционирование дыхательной системы животных, используя в качестве модели принцип действия водя­ного сифона, а английский врач XVII в. У. Гарвей представлял работу серд­ца и движение крови в системе кровообращения в виде механической модели. С начала Нового времени (XVI в.) метод моделирования посте­пенно приобретает все большее распространение, проникая во все отрас­ли научного знания.

Осознание общенаучной значимости этого метода происходит в XX в. под влиянием успехов кибернетики,продемонстрировавшей возможности создания и изучения систем, являющихся функционально сходными,хотя и реализованных на разных материальных носителях. Активное обсуждение общеметодологической значимости моделирования началось со статьи Н. Винера и А. Розенблюта «Роль моделей в науке» (1946) — ученых, непо­средственно стоявших у истоков кибернетики. Период 1950-1970-х гг. в связи с расцветом кибернетики и использованием системного подходаозна­менован особенно интенсивной разработкой проблематики моделирования как в мировой, так и в отечественной научной и философской литературе.

Сейчас, хотя пик интереса исследователей к этой теме пройден, в фило­софии и методологии науки важное значение моделирования общепри­знано, а сам метод моделирования надежно занимает свое заслуженное место в научном познании. Термин «моделирование» сегодня ассоциируется математическими методами для решения научно-практических задач, когда вместо непосредственного манипулирования объектом изучают его математический «образ», решая с использованиемкомпьютерных технологий сложные вычислительные задачи. Не круг тем, охватываемых методами моделирования, гораздо разнообраз­нее; например, использование деловых игр в социальных исследованиях, впедагогике и т.п. тоже является видом моделирования. Методы и приемы моделирования получили сегодня широкое распространение во многих областяхнаучно-практической деятельности.

Показания к моделированию

Метод моделирования применяется в тех ситуациях, когда по какой- либо причине исследователю предпочтительно заменить непосредственное изучение исходного объекта его моделью.Это ситуации, в которых прямое манипулирование с оригиналом либо крайне затруднительно, либо неэффективно, либо вообще невозможно. Примерами ситуаций, вкоторых пока­зано применение моделирования, могут служить:

1) многие виды медико-биологических исследований, объектом которых должен служить человек, что недопустимо по этическим причинам;

2) технические испытания различных дорогостоящих объектов: судов, самолетов, зданий и т.п. (которые вполне могут быть заменены моде­лями-макетами, воспроизведением отдельных частей);

3) недоступные во времени или в пространстве объекты и процессы (уда­ленные космические тела, процессы далекого прошлого);

4) отсутствие возможностей изучить объект целиком (массовые явления, которые подлежат изучению лишь на выборочных примерах);

5) другие случаи подобного рода, когда вместо оригинала исследователь строит или подыскивает подходящую модель: лабораторных животных — вместо человека, крыло самолета в аэродинамической трубе — вместо целого самолета, репрезентативную выборку для социологического опроса — вместо опроса всего населения, математическую модель колебания цен в каком-то периоде исторического прошлого.

Этапы и структура моделирования

Процесс моделирования включает всебя следующие шаги:

1) построение модели;

2) изучение модели;

3)экстраполяцию— или перенос полученных данных на область знаний об исходном объекте

На первом этапе при осознании невозможности или нецелесообразно­сти прямого изучения объекта создается его модель.Целью этого этапа является создание условий для полноценного замещенияоригинала объектом-посредником, воспроизводящим его необходимые параметры.

На втором этапе производится изучение самой модели, настолько детальное, насколько это требуется для решения конкретной познава­тельной задачи. Здесь исследователь может осуществлять наблюденияза поведением модели, проводить над ней эксперименты(модельный эк­сперимент), осуществлять измерение или описание ее характеристик. Это зависит от специфики самой модели и от исходной познаватель­ной задачи. Целью второго этапа является получение требуемой ин­формации о модели.

Необходимо отметить, что, хотя модель мы создаем (или выбираем) сами, подчиняя ее ряду условий, она обладает определенной самостоятельностью.В ней присутствует некий элемент неизвестности,поэтому модель надо действительно изучать,и она в должной мере заранее неизвестна. Метод моделирования потому и относится к эмпирическимметодам, что предполагает интерактивный режим работы с изучаемым явлением (в данном случае с моделью, а также в той или иной мере — и с оригиналом).

Третий этап (экстраполяционный) представляет собой возвращение к исходному объекту, т.е. интерпретацию полученных знаний о модели, оценку их приемлемости и, соответственно, непосредственное примене­ние их к оригиналу, позволяющее в случае успеха решить исходную по­знавательную задачу.

Классификация моделей

Назовем некоторые основания классификации моделей:

1) по субстрату — материальные (вещественные) и идеальные (концеп­туальные, мысленные);

2) по моделируемым аспектам — структурные, функциональные;

3) по виду сходства между оригиналом и моделью — физические, анало­говые, квазианалоговые.

 

Проблема сходства оригинала и модели

Для решения многих задач, в которых используется моделирование, требуется уточнить интуитивное понимание того, что модель похожа на оригинал. Знание точных взаимоотношений модели и оригинала позволяет на всех этапах моделирования действовать более адекватно: от этапа построениямодели с заданными характеристиками до экстраполяции,осуществляемой по строгим правилам.

В физико-технических науках для обозначения обобщенного отношения сходства модели и оригинала используется термин «подобие».В физике существует особая дисциплина — теория подобия;она обеспечивает концептуальную поддержку моделирования. В теории подобия разрабатываются методы, с помощью которых можно репрезентировать данные как зависимости между безразмерными величинами, т.е. в некотором нейтральном виде; тогда явления, которые описываются одинаковыми значениями безразмерных величин, являются подобны­мидруг другу. Пользуясь этой теорией, исследователь может, изучая явление на какой-либо модели, переносить полученные результаты на совершенно иные явления, но характеризующиеся теми же значения­ми безразмерных величин. При точном моделировании оперируют и такими понятиями, как масштабы(отношения, устанавливающие условия перехода от модели к оригиналу), критерии подобия(крите­рии адекватного сходства модели и оригинала); выделяют также раз­личные виды подобия — абсолютное, полное, неполное, приближен­ное. У истоков теории подобия стояли Галилей и Ньютон. Так, Галилей показал, что сходство механических систем базируется не просто на интуитивно понимаемом сходстве их по внешнему виду и т.п., а на определенных физических соотношениях. И. Ньютон, продолжая этот подход, сформулировал две теоремы подобия для механических систем.

Для обозначения еще более широкого отношения сходства между объек­тами, системами, процессами предлагают также использовать термин «изо­морфизм»— понятие, пришедшее из абстрактной алгебры. Две сравнивае­мые системы называются изоморфными,если каждому элементу одной системы взаимно однозначно соответствует элемент второй системы, а каж­дому отношению между элементами первой системы соответствует отноше­ние второй системы, имеющее такие же структурные свойства. В контексте моделирования две системы называют изоморфными, если между ними мо­жет быть установлено взаимное соответствие по некоторым изучаемым свойствам. Например, у информационных процессов могут быть выделе­ны устойчивые общие черты, позволяющие им протекать сходным обра­зом в биологическом объекте, компьютере, социальной системе, тогда все эти объекты рассматриваются как изоморфныеотносительно протекания их информационных процессов.

Взаимное соответствие определенных аспектов двух систем может быть обнаружено и реализовано различными способами. Наиболее яр­ким случаем такого соответствия является изоморфизм структур. При моделировании этого сходства исследователь пытается воспроизвести структурные особенности одной системы на ином субстрате. В бионикедля нужд технических наук создаются искусственные аналоги объектов или процессов, обнаруженных в живой природе: например, ультразвуко­вая эхолокация имитирует соответствующие органы животных. Струк­турное моделирование также широко используется в медицинских науках при протезировании органов. Другим вариантом соответствия является существенное сходство функции(поведения). Один и тот же эффект мо­жет быть реализован в системах с совершенно разными структурами: летательный аппарат может быть выполнен не обязательно на основе крыла, но и на основе пропеллера, баллона с легким газом, реактивного двигателя.

 

Логические аспекты этапа экстраполяции

Завершающим этапом моделирования является экстраполяция. В ко­нечном счете, именно экстраполяция оправдывает весь процесс работы с моделью. Экстраполяционный вывод как перенос информации с одного объекта на другой, сходный с ним, с логической стороны представляет собой заключение по аналогии. Однако в целом моделирование нельзя сводить лишь к логической операции вывода по аналогии, т.к. оно являет­ся сложным процессом, включающим в себя различные типы логического вывода. Положение дел здесь подобно тому, что имеет место в математике, которая является дедуктивной наукой, однако не может быть сведена к одному лишь дедуктивному выводу. Какие же процедуры лежат в осно­ве экстраполяционных выводов?

Следует помнить, что вывод по аналогии относится в логике к недедуктивным,т.е. неточным, приближенным рассуждениям. Поэтому час­то требуется применение более строгих методов, ведь методологиче­ским идеалом экстраполяции является достижение максимальной точностипри переходе от модели к оригиналу. В тех случаях, когда модельстроится по уточненным критериям соответствия оригиналу, экстраполяционные выводы основываются на специальных расчетах, а не просто на видимом сходстве. Строго говоря, такие выводы, осно­ванные на точных критериях подобия, не могут расцениваться как приблизительные, а являются уже дедуктивным процессом.

Существует один тонкий вопрос, касающийся логической стороны отношений модели и оригинала. Следует обратить внимание на то, что в общем случаеоригинал и его модель относятся к разнымклассам объек­тов, т.е. вполне могут быть совершенно разноплановыми явлениями. Имен­но поэтому между ними могут быть определены отношения только аналогии,но не логические отношения более тесного родства — отношения включения элемента в класс, части и целого, тождества и т.п. В противном случае будет утрачена специфика самого модельногосоотношения, и оно примет универ­сальный и одновременно бессодержательный характер. Тогда окажется, что модельное соотношение будет приложимо ко всему, ведь и часть можно будет считать моделью целого, и элемент — моделью множества. отношение между экспериментоми классом реальных ситуаций, на которые он должен быть экстраполирован (с обеспечением внешней валидности), не является модельным,т.к. отношение между явлением, выделяе­мым в чистом виде в данном эксперименте, и другими явлениями этой же предметной области, является отношением тождества,а не аналогии.

Заметим также, что понимание логического отношения оригинала и модели как отношения аналогиине должно вызывать затруднений в по­нимании статуса статистики.Хотя при статистическом исследовании и производится случайная выборка из самой же генеральной совокупно­сти объектов, полученная выборка является именно модельюгенеральной совокупности. Ведь в общем случае изучаемые свойства выборки могут существенно отличаться от свойств оставшейся части (или от свойств целого); исследователь не может рассчитывать на их тождество, целью статистического подхода как раз и является создание условий, макси­мально приближающих выборку к генеральной совокупности. Поэтому статистическое исследование тоже представляет собой вид моделирования;для построения статистической модели, как и для всякой другой, необходимы определенные допущения,идеализирующие ситуацию и вы­полняющиеся лишь приближенно, и определенные условия,позволяющие повысить достоверность экстраполяционных выводов.

Итак, экстраполяциябазируется на выводе по аналогии,но с использо­ванием всех возможностей для повышения его точности.