Косой открытый геликоид.
А2
В 2
a
А”2
j
А 1 jBjjjjj j , В1,В”2
A”1
Этот геликоид задан винтовой линией , шагом, диаметром, осью винтовой поверхности и образующей наклоненной к оси под углом a .
Для построения витка геликоида выполним следующие построения.
Разделим горизонтальную проекцию винтовой линии на 8 частей.
Когда точка А перемещаясь по винтовой линии перейдет в порложение А” повернувшись на 1/8 оборота, точка В переместиться по оси в положение В”. Последовательно перемещая точку А по винтовой линии и соединяя ее с положением точки В на оси прямыми линиями получим каркас винтовой поверхности.
Посторения прошу зарисовать с доски в аудитории.
Название “косой” связано с тем, что угол между осью и образующей не равен прямому. “Открытый” означает, что образующая с осью скрещивается.
Пусть в первоначальном положении образующая АВ паралельна пфронтальной плоскости проекций (П2). В точке А образующая пересекается с винтовой направляющей. Угол наклона образующей a с осью õ проецируется на плоскость П2 без искажений.
Через какую бы точку образующей не проходила вторая направляющая , кратчайшее растояние между образующей и осью останется постоянным, поэтому при винтоввом движении образующая будет касаться цилиндра радиуса R, равного этому расстоянию.
Возьмем точку В образующей в месте ее касания цилиндрической поверхности. Эта точка опишет винтовую линию радиуса R , того же шага , что и винтовая линия ( гелиса.).
Ее можно принять за вторую направляющую геликоида.
В”2
В2
А”2
А2
А1
В ”1
А”1