Закалка

Отжиг

Виды термической обработки

 

Любой процесс термической обработки можно описать графиком, показывающим изменение температуры во времени. По графику можно определить температуру нагрева, скорости нагрева и охлаждения, длительность выдержки при температуре нагрева и общую продолжительность процесса, но получить информацию о виде термической обработки не представляется возможным. Вид термической обработки определяется не характером изменения температуры во времени, а типом фазовых и структурных изменений в металле. Основываясь на этом признаке, А. А. Бочвар разработал классификацию основных видов термической обработки металлов и сплавов.

Термическая обработка подразделяется на собственно термическую, химико-термическую и термомеханическую обработки.

Собственно термическая обработка заключается только в термическом воздействии на металл или сплав. При химико-термической обработке дополнительно производится диффузионное насыщение металлами и неметаллами. Термомеханическая обработка предусматривает сочетание термического воздействия и пластической деформации.

Собственно термическая обработка включает следующие основные виды: отжиг; закалка; отпуск и старение.

 

 

Отжиг – операция термической обработки, включающая нагрев стали, как правило, выше температуры фазовых превращений, выдержку и последующее медленное охлаждение, осуществляемое, чаще всего, вместе с печью.

При медленном охлаждении стали по своему состоянию приближаются к фазовому и структурному равновесию, а получаемые структурные составляющие соответствуют диаграмме «железо – цементит». После отжига сталь имеет низкие значения твердости и прочности и высокую пластичность.

В большинстве случаев отжиг является подготовительной термической обработкой. Отжигу подвергают отливки, поковки, прокат. В некоторых случаях отжиг является конечной термической обработкой, например отжиг крупных отливок.

Различают отжиг I и II рода.

 

2.3.1.1 Отжиг I рода

 

Отжиг 1-го рода частично или полностью устраняет отклонения от равновесного состояния, возникшие при предыдущей обработке, причем его проведение не обусловлено фазовыми превращениями. Различают следующие разновидности отжига 1-го рода: диффузионный, рекристаллизационный и релаксационный.

Диффузионному или гомогенизирующему отжигу подвергают отливки и слитки из легированных сталей для уменьшения дендритной ликвации. Металл нагревают до температур 1100…1200°С, при которых наиболее полно протекают диффузионные процессы, необходимые для выравнивания химического состава по всему объему детали.

Нагрев осуществляется со скоростью 100-150 град/ч, а продолжительность выдержки зависит от химического состава стали и массы садки. Чрезмерно длительные выдержки при гомогенизации нецелесообразны, так как они снижают производительность процесса и приводят к излишнему расходу энергоресурсов. Время выдержки при диффузионном отжиге может достигать нескольких десятков часов.

После гомогенизации сталь имеет крупное зерно, которое измельчается при последующей обработке давлением или обычном полном отжиге.

Рекристаллизационному отжигуподвергают холоднодеформированный металл для снятия наклепа. Кроме рекристаллизации феррита при отжиге могут происходить коагуляция и сфероидизация цементита, что повышает пластичность и облегчает обработку давлением. Данный вид термической обработки предусматривает нагрев стали выше температуры рекристаллизации. Для низкоуглеродистых сталей (до 0,2%С) температуру отжига после прокатывания или штампования заготовок выбирают в пределах 680…700оС с выдержкой до 10 часов. Отжиг калиброванных прутков после холодной протяжки из легированных сталей проводят при 680…740оС в течение 0.5…1.5 ч.

Релаксационный отжиг используют для обработки литья, сварных соединений и механообработанных деталей, когда в результате неравномерного охлаждения или неоднородного пластического деформирования возникают напряжения, наличие которых может вызвать изменение размеров и деформацию деталей.

Отжиг для снятия напряжений осуществляется при температурах 160… 700оС с последующим медленным охлаждением. Например, для многих деталей прецизионных станков проводят отжиг при 570…600оС в течение 2…3 часов после основной механической обработки и при 160…180оС такой же продолжительности после окончательной механической обработки для снятия шлифовальных напряжений. Отжиг для снятия напряжений после сварки проводится при 650…700оС.

 

2.3.1.2 Отжиг II рода

Отжиг II родазаключается в нагревании стали до температур свыше АС1 или АС3, выдержке и последующем медленном охлаждении. В процессе нагрева и охлаждения происходят фазовые превращения, которые определяют структуру и свойства стали.

Основные цели отжига: перекристаллизация стали, снятие внутренних напряжений, снижение твердости и улучшение обрабатываемости.

При фазовой перекристаллизации в процессе отжига измельчается зерно, устраняется видманштеттовая структура и строчечность. Характерным структурным дефектом стальных отливок и сталей, нагретых до температур 1100…1200оС (явление перегрева), является наличие крупного зерна аустенита. При ускоренном охлаждении крупнозернистого аустенита создаются условия для образования видманштеттовой структуры, которая характеризуется тем, что кристаллы доэвтектоидного феррита ориентированно произрастают относительно кристаллической решетки аустенита и имеют форму пластин. Видманштеттов феррит наблюдается лишь в сталях, содержащих менее 0,4 % С и наиболее четко проявляется при ускоренном охлаждении стали в интервале температур от А1 – 50оС до 600..550оС.

Строчечная структура возникает из-за загрязнения неметаллическими включениями, которые при обработке давлением вытягиваются, и феррит, зарождаясь на них, образует вытянутые скопления.

Еще одной важной целью отжига является предотвращение образования флокенов при производстве крупных поковок.

Известно, что одной из главных причин образования флокенов является повышенное содержание водорода в стали. Флокены обычно образуются в катаной стали или в поковках, но иногда встречаются и в литой стали. Как правило, они располагаются в центральной части поковок и берут свое начало в ликвационных участках, обогащенных углеродом, фосфором, серой и легирующими элементами.

Причиной образования флокенов является диффузионно-подвижный водород, а температура их образования лежит ниже 200оС. Образованию флокенов способствует наличие дополнительных внутренних напряжений (структурных, термических и механических), которые увеличивают локальную концентрацию водорода в твердом растворе. Только растягивающие напряжения при совместном действии с водородом могут вызвать образование флокенов, сжимающие напряжения уменьшают опасность флокенообразования.

Все стали общего назначения по степени флокеночувствительности подразделяют на четыре группы. К первой группе относят углеродистые стали 15…55. Во вторую группу включены низколегированные стали: 20Х…55Х, 10Г2, 50Г, 50Г2, 60ХГ, 15ХМ, 35ХМ, 38Х2МЮА, 20ГС, 25ГС, 20ХГСА, 35ХГСА, 08ГДНФ. Третью группу составляют среднелегированные стали: 20ХН; 40ХН; 50ХН; 60ХН; 40ХНМ; 34ХН1МА; 38ХГН; 12Х1М1Ф; 15Х1М1Ф; 5ХГМ. Высоколегированные стали 34ХН3М. 38ХН3М, 18Х2Н4МА, 5ХНМ, 5ХНМ2 по своей флокеночуствительности отнесены к четвертой группе.

Продолжительность противофлокенного отжига поковок, в зависимости от флокеночувствительности стали и размеров поковок, может достигать несколько сотен часов, что делает этот процесс дорогостоящим.

Существуют следующие виды отжига 2-го рода: полный, неполный и изотермический отжиг. (рис. 13).

При полном отжиге доэвтектоидная сталь нагревается выше Ас3 на 30~50°С, выдерживается при этой температуре до полного завершения фазовых превращений и медленно охлаждается. При этом ферритно-перлитная структура превращается при нагреве в аустенитную, которая при последующем медленном охлаждении распадается на феррит и перлит, и, таким образом, происходит полная перекристаллизация.

На практике скорость нагрева обычно близка к 100 град/ч, а продолжительность выдержки колеблется от 0,5 до 1 ч на 1 т нагреваемого металла. Медленное охлаждение с температуры нагрева должно обеспечить распад аустенита с образованием перлита. Легированные стали охлаждают значительно медленнее (10 - 100 град/ч), чем углеродистые (150 - 200 град/ч).

Рисунок 13 - Схемы проведения отжига и нормализации

доэвтектоидной стали

 

Чрезмерное превышение температуры нагрева над точкой Ас3 вызывает рост зерна аустенита, что ухудшает свойства стали.

Неполный отжигзаключается в нагреве выше АС1 и медленном охлаждении. При этом происходит частичная перекристаллизация только перлита, а феррит в доэвтектоидных сталях и цементит в заэвтектоидных не претерпевают изменений.

Неполному отжигу подвергают доэвтектоидные стали с целью снятия внутренних напряжений и улучшения обрабатываемости резанием. Применение его допустимо лишь в том случае, когда нагрев в процессе предварительной обработки давлением не привел к образованию крупного зерна (иначе необходим полный отжиг с фазовой перекристаллизацией).

Неполный отжиг заэвтектоидных сталей называется сфероидизирующим. В результате получают структуру зернистого перлита. Охлаждение при сфероидизации должно быть медленным, чтобы обеспечить распад аустенита на ферритно-карбидную смесь и коагуляцию образовавшихся карбидов. Целью проведения сфероидизирующего отжига является улучшение обрабатываемости резанием. Кроме этого, стали со структурой зернистого перлита менее склонны к перегреву, образованию трещин и деформации при последующей закалке.

Изотермический отжигчасто проводят на практике с целью экономии времени. В этом случае деталь нагревают, а затем быстро охлаждают (чаще переносом в другую печь) до температуры, лежащей ниже АС1 на 50-100°С. При этой температуре деталь выдерживается до полного распада аустенита (т. е. осуществляется изотермическая выдержка), после чего охлаждается на воздухе (рис. 13).

В настоящее время изотермический отжиг часто применяют для легированных сталей, так как он сокращает продолжительность процесса. Для ускорения отжига температуру изотермической выдержки желательно выбирать близкой к температуре минимальной устойчивости переохлажденного аустенита в перлитной области.

После изотермического отжига получается более однородная структура, что связано с выравниванием температуры по сечению детали и превращением по всему объему одновременно.

 

2.3.1.3 Нормализация

Нормализацией называется нагрев доэвтектоидной стали до температуры выше АС3, а заэвтектоидной – выше Аcm на 30…50°С с последующим охлаждением на воздухе. При нормализации происходит перекристаллизация стали и устранение крупнозернистой структуры, возникающей при литье или ковке.

В результате охлаждения на воздухе распад аустенита на ферритно-цементитную смесь происходит при более низких температурах, а следовательно, повышается дисперсность её структуры и твердость. Полученная структура называется сорбитом.

Нормализации подвергают низкоуглеродистые стали вместо отжига. Твердость при этом выше, чем при отжиге, но для низкоуглеродистых сталей ее значения достаточно низкие. При этом по сравнению с отжигом улучшается качество поверхности при резании.

Для среднеуглеродистых сталей нормализацию применяют вместо закалки и высокого отпуска. Механические свойства при этом снижаются, но уменьшается деформация изделий по сравнению с возникающей при проведении закалки и высокого отпуска.

Высокоуглеродистые (заэвтектоидные) стали подвергают нормализации с целью устранения цементитной сетки.

Нормализацию с последующим высоким отпуском (600 - 650°С) часто применяют для исправления структуры легированных сталей вместо отжига.

 

 

2.3.2.1 Общие положения

 

Существует три принципиально различающихся между собой вида закалки:

- закалка с полиморфным превращением;

- закалка без полиморфного превращения;

- закалка с оплавлением поверхности.

Закалка с полиморфным превращением (закалка стали на мартенсит) на протяжении веков является основным способом упрочнения стали, а в настоящее время применяется и для закалки сплавов цветных металлов.

Закалка без полиморфного превращения была открыта на рубеже 20-го века, и её промышленное использование началось одновременно с применением алюминиевых сплавов. Закалка без полиморфного превращения применима для сплавов, имеющих переменную в зависимости от температуры растворимость компонентов. В результате закалки образуется пересыщенный твердый раствор, но кристаллическая решетка остается неизменной.

Закалка с оплавлением поверхности появилась в 70-х годах прошлого века, когда в промышленности начали использовать лазерный нагрев.

Закалка стали – это термическая обработка, которая включает нагрев до температуры выше фазовых превращений, выдержку при этой температуре и быстрое охлаждение со скоростью, превышающей критическую (рис. 13).Закалкаявляется упрочняющей термической обработкой. Повышение твердости и прочности обеспечивается за счет получения структуры мартенсита. Закалка не является окончательной операцией, и после нее обязательно производится отпуск.

Результаты закалки во многом зависят от правильного выбора температуры нагрева для закалки. Доэвтектоидные стали для закалки следует нагревать до температуры на 30-50°С выше Ас3. В этом случае сталь с исходной структурой перлит + феррит нагревается до аустенитного состояния и при охлаждении со скоростью больше критической получается мартенсит. Такая закалка называется полной.

Неполная закалка осуществляется от температур, которые соответствуют межкритическому интервалу от АС1 до АС3, и используется только для листовой низколегированной стали для получения структуры феррита с небольшими участками мартенсита до 20%. Такая структура обеспечивает достаточно высокие механические свойства и, одновременно, способность к штамповке. Во всех других случаях неполная закалка доэвтектоидных сталей не используется, поскольку механические свойства получаются более низкими по сравнению с закалкой от температур выше АС3.

Заэвтектоидные стали нагревают для закалки на 15…20°С выше АС1. При этих температурах в стали наряду с аустенитом имеется цементит. Поэтому после закалки в структуре заэвтектоидных сталей присутствуют мартенсит с небольшим количеством остаточного аустенита и нерастворенные частицы цементита, имеющие высокую твердость. Интервал закалочных температур не должен превышать 15…20оС, так как чрезмерное повышение температуры закалки вызывает интенсивный рост зерна, что приводит к снижению прочности и сопротивления хрупкому разрушению.

Закалка заэвтектоидных сталей, по сути, является неполной. Если заэвтектоидную сталь нагревать для закалки выше Асm ,то ее структура будет состоять из крупноигольчатого мартенсита с повышенным содержанием остаточного аустенита, присутствие которого в структуре стали снижает ее твердость.

Продолжительность нагрева и выдержки при закалочной температуре должна обеспечить прогревание изделий по сечению и завершение фазовых превращений, но исключить рост зерна и обезуглероживание поверхностных слоев детали. В большинстве случаев является приемлемым выбор продолжительности нагрева из расчета 1,5 мин на 1мм сечения для углеродистых сталей и 2 мин на 1мм сечения для легированных сталей. Продолжительность выдержки составляет одну треть от продолжительности нагрева.

При определении технологических параметров процесса закалки необходимо учитывать закаливаемость и прокаливаемость стали.

Закаливаемость – это способность стали повышатьв процессе закалки свою твердость. Закаливаемость зависит главным образом от содержания углерода в стали, повышается при увеличении его содержания и считается достаточной при 0,4%С и выше, когда твердость закаленной стали приближается к 60HRC (рис. 14).

Прокаливаемость характеризует глубину закаленного слоя при данных условиях закалки. За глубину закаленного слоя условно принимают расстояние от поверхности до полумартенситной зоны (50% мартенсита и 50% троостита). Диаметр заготовки, в центре которой после закалки в данной охлаждающей среде образуется полумартенситная структура, называется критическим диаметром ( Дкр). Прокаливаемость возрастает по мере повышения стойкости переохлажденного аустенита и, соответственно, снижения критической скорости закалки.

1 – твердость мартенсита; 2 –заэвтектоидная сталь после закалки от температуры АС1 + 20оС; 3 -твердость заэвтектоидной стали после закалки от температуры АСМ + (20…30оС)

Рисунок 14 - Влияние температуры закалки на твердость за эвтектоидной стали


2.3.2.2 Способы закалки

Охлаждение при закалке должно обеспечить получение структуры мартенсита в пределах заданного сечения детали при отсутствии образования трещин и деформаций.

Идеальным охлаждением считается такое, при котором обеспечивается высокая скорость охлаждения при температурах наименьшей устойчивости переохлажденного аустенита для предупреждения его диффузионного превращения и медленное охлаждение в интервале мартенситного превращения с целью уменьшения закалочных напряжений (рис. 15).

 

1 – закалка в воде; 2 – ступенчатая закалка;3 – идеальное

охлаждение; 4 – закалка в масле;5 – изотермическая закалка;

Vкрит.- критическая скорость закалки

Рисунок 15 – Кривые охлаждения, соответствующие различным видам закалки

 

Напряжения при закалке стали возникают в результате неравномерного охлаждения поверхности и центральных зон детали, а также из-за увеличения объема при мартенситном превращении и неодновременности протекания его по сечению детали. В первом случае напряжения классифицируются как тепловые, а во втором – как структурные.

В начале охлаждения поверхностные слои вследствие уменьшения объема сжимаются, чему противодействуют еще неохлажденные внутренние слои. Это вызывает образование в поверхностных слоях напряжений растяжения, а во внутренних – напряжений сжатия. По мере дальнейшего охлаждения напряжения начнут уменьшаться, и в некоторый момент произойдет смена знака напряжений на поверхности и в центре. После окончательного охлаждения на поверхности образуются остаточные напряжения сжатия, а в сердцевине – напряжения растяжения. Появление остаточных напряжений является результатом того, что напряжения вызывают не только упругую, но и неодновременную и неодинаковую пластическую деформацию слоев по сечению детали.

Структурные напряжения образуются по обратной схеме. В начале охлаждения в результате мартенситного превращения поверхностные слои расширяются, чему противодействуют внутренние слои, еще не испытавшие структурных преобразований. Это приводит к образованию на поверхности сжимающих напряжений, а в центре – растягивающих. По мере дальнейшего охлаждения знак напряжений на поверхности и в центральных зонах изменяется, и после окончательного остывания на поверхности будут остаточные напряжения растяжения, а в сердцевине – напряжения сжатия.

При закалке одновременно возникают как тепловые, так и структурные напряжения и в зависимости от их соотношения могут образовываться различные эпюры суммарных напряжений. Наиболее опасными являются растягивающие напряжения на поверхности, которые способствуют образованию трещин и снижают сопротивление усталостному разрушению стали.

Растягивающие напряжения возникают, в основном, за счет появления структурных напряжений, величина которых тем больше, чем выше температура закалки и интенсивнее охлаждение в интервале мартенситного превращения Мн…Мк,. Для уменьшения структурных напряжений необходимо снижать скорость охлаждения ниже температуры начала мартенситного превращения.

В качестве закалочных сред для углеродистых сталей, имеющих высокую критическую скорость закалки, применяются вода и различные водные растворы, а для легированных сталей, имеющих небольшую критическую скорость охлаждения, - масло, водовоздушные смеси и т. п.

Вода, как закалочная среда, имеет большую скорость охлаждения в перлитном интервале, но при этом и высокую скорость охлаждения при температурах образования мартенсита, что может приводить к образованию трещин и деформации закаливаемых изделий (рис.15). Кроме этого, охлаждающая способность воды резко снижается при повышении её температуры.

При закалке в масле охлаждение в мартенситном интервале осуществляется с невысокой скоростью, но в интервале перлитного превращения интенсивность охлаждения часто оказывается недостаточной для его подавления (рис. 15).

Таким образом, в настоящее время нет закалочной среды, которая бы обеспечивала идеальное охлаждение, и поэтому разработаны различные способы закалки, использование которых позволяет снизить уровень возникающих напряжений при обеспечении необходимого структурообразования.

Наиболее распространенным способом закалки является закалка в одном охладителе, при котором деталь погружают в закалочную среду, где она остается до полного охлаждения. С целью уменьшения внутренних напряжений детали перед погружением в закалочную жидкость некоторое время охлаждают на воздухе. Такой способ называется закалкой с подстуживанием. При этом необходимо, чтобы температура детали не опускалась ниже Аr3 для доэвтектоидных сталей и ниже Аr1 – для заэвтектоидных.

При закалке в двух средах деталь сначала охлаждают в воде до температуры несколько выше Мн, а затем для окончательного охлаждения переносят в среду с меньшей охлаждающей способностью, при этом уменьшаются внутренние напряжения, связанные с превращением аустенита в мартенсит.

При ступенчатой закалке деталь после нагрева охлаждается в закалочной среде, имеющей температуру несколько выше точки Мн, и выдерживается в ней до выравнивания температуры по всему сечению, но при этом не должно произойти превращение аустенита в бейнит. После этого следует окончательное охлаждение на воздухе, во время которого происходит превращение аустенита в мартенсит. Проведение ступенчатой закалки позволяет уменьшить деформации, коробление и опасность возникновения трещин.

Изотермическая закалка выполняется так же, как и ступенчатая, но выдержка при температуре несколько выше Мн увеличивается для завершения превращений аустенита в бейнит. Данный способ закалки применяется для легированных сталей и последующий отпуск не производится. В качестве охлаждающих сред при ступенчатой и изотермической закалках применяют расплавленные соли (55% KNO и 45%NaNO3) илищелочи (20%NaOH и 80%KOH).

Закалка с самоотпуском применяется в основном для ударного инструмента (зубила, кузнечный инструмент и т. д.), когда для обеспечения высокой стойкости инструмента требуется, чтобы твердость постепенно и равномерно снижалась от рабочей к хвостовой части. Такое распределение твердости возможно, если при закалке нагретую деталь рабочей частью погружают в воду и вынимают после кратковременной выдержки. За счет тепла хвостовой части детали её рабочая часть нагревается и отпускается. Температуру нагрева определяют по цветам побежалости, появление которых объясняется возникновением на шлифованной поверхности тонких слоев окислов. Цвет слоя зависит от его толщины, которая определяется температурой. При температуре 220оС поверхность приобретает светло-желтый цвет, при 230оС - желтый, при 240оС - темно-желтый, при 250оС - оранжевый, при 260оС - коричневый, при 270оС - красный, при 280оС - фиолетовый, при 300оС - синий, при 320оС - серый. Этот давно известный способ сейчас становится все более востребованным, что объясняется стремлением к энергосберегающим технологиям и открывающимися возможностями предварительного моделирования закалочного процесса и его выполнения в автоматическом режиме.

2.3.2.3 Обработка холодом

 

Если температура конца мартенситного превращения ниже 0оС, то после закалки в структуре стали содержится остаточный аустенит. Наличие остаточного аустенита снижает твердость стали, а его последующий распад приводит к изменению форм и размеров. Чем ниже температура конца мартенситного превращения, тем больше остаточного аустенита в структуре закаленной стали.

С целью уменьшения количества остаточного аустенита сталь после закалки охлаждают до отрицательных температур. Такой технологический процесс называется обработкой холодом, в результате чего возобновляется мартенситное превращение. Температурный режим обработки холодом определяется температурой конца мартенситного превращения. Поскольку превращение происходит только при охлаждении в области мартенситного превращения. Более глубокое охлаждение нецелесообразно, поскольку не вызовет дополнительного превращения.

После закалки стали выдержка при комнатной температуре приводит к стабилизации аустенита и при последующей обработке холодом не весь остаточный аустенит будет превращаться в мартенсит. Поэтому обработку холодом рекомендуется проводить немедленно после закалки.

Обработка холодом целесообразна для углеродистых сталей с содержанием углерода свыше 0,6% и применяется для стабилизации размеров калибров, колец шарикоподшипников и других особо точных изделий, для получения максимальной твердости инструмента и цементованных деталей, а также для повышения магнитных характеристик стальных магнитов.