Определение комплексного числа, геометрическое представление комплексных чисел

Лекция № 32.

 

Начальные сведения о мнимых и комплексных числах приведены в разделе «Мнимые и комплексные числа». Необходимость в этих числах нового типа появилась при решении квадратных уравнений для случая D < 0 ( здесь D – дискриминант квадратного уравнения). Долгое время эти числа не находили физического применения, поэтому их и назвали «мнимыми» числами. Однако сейчас они очень широко применяются в различных областях физики

и техники: электротехнике, гидро- и аэродинамике, теории упругости и др.

 

Комплексные числа записываются в виде: a+ bi. Здесь a и bдействительные числа, а iмнимая единица, т.e. i 2 = –1.Число a называется абсциссой, a b – ординатой комплексного числа a+ bi. Два комплексных числа a+ bi и a – bi называются сопряжёнными комплексными числами.

Основные договорённости:

1. Действительное число а может быть также записано в форме комплексного числа: a+ 0 i или a – 0 i.Например, записи 5 + 0 i и 5 – 0 i означают одно и то же число 5 .

 

2. Комплексное число 0+ bi называется чисто мнимым числом.Запись bi означает то же самое, что и 0+ bi.

 

3. Два комплексных числа a+ bi и c+ di считаются равными, если a= c и b= d. В противном случае комплексные числа не равны.

 

Сложение. Суммой комплексных чисел a+ bi и c+ di называется комплексное число ( a+ c ) + ( b+ d ) i. Таким образом, при сложении комплексных чисел отдельно складываются их абсциссы и ординаты.

Это определение соответствует правилам действий с обычными многочленами.

 

Вычитание. Разностью двух комплексных чисел a+ bi (уменьшаемое) и c+ di (вычитаемое) называется комплексное число ( a – c ) + ( b – d ) i.

Таким образом, при вычитании двух комплексных чисел отдельно вычитаются их абсциссы и ординаты.

Примеры: 1)(1 + i) + (2 – 3i) = 1 + i + 2 –3i = 3 – 2i;

2)(1 + 2i) – (2 – 5i) = 1 + 2i – 2 + 5i = –1 + 7i.

 

Умножение. Произведением комплексных чисел a+ bi и c+ di называется комплексное число:

( ac – bd ) + ( ad + bc ) i . Это определение вытекает из двух требований:

 

1) числа a+ bi и c+ di должны перемножаться, как алгебраические двучлены,

2) число i обладает основным свойством: i 2 = 1.

 

Примеры:

1)(1 + i)∙(2 – 3i) = 2 – 3i + 2i – 3i2 = 2 – 3i + 2i + 3 = 5 – i;

2)(1 + 4i)∙(1 – 4i) = 1 – 42 i2 = 1 + 16 = 17;

3)(2 + i)2 = 22 + 4i + i2 = 3 + 4i.

 

П р и м е р . ( a+ bi )( a – bi )= a 2 + b 2. Следовательно, произведение

двух сопряжённых комплексных чисел равно действительному положительному числу.

Деление.Разделить комплексное число a+ bi (делимое) на другое c+ di (делитель) - значит найти третье число e+ f i (чатное), которое будучи умноженным на делитель c+ di, даёт в результате делимое a+ bi.

Если делитель не равен нулю, деление всегда возможно.

 

Пример. Найти ( 8 + i ) : ( 2 – 3i ) .

Решение. Перепишем это отношение в виде дроби:

Умножив её числитель и знаменатель на 2 + 3i и выполнив все преобразования, получим: