Лекция № 10.
Предел функции. Непрерывность элементарных и сложных функций. Точки разрыва, их классификация.
Предел функции в точке.
y f(x)
A + e
A
A - e
0 a - D a a + D x
Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)
Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что
0 < ïx - aï < D
верно неравенство ïf(x) - Aï< e.
То же определение может быть записано в другом виде:
Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.
Запись предела функции в точке:
Определение. Если f(x) ® A1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.
у
f(x)
А2
А1
0 a x
Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.
Пределы А1 и А2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).
Предел функции при стремлении аргумента к бесконечности.
Определение. Число А называется пределом функции f(x) при х®¥, если для любого числа e>0 существует такое число М>0, что для всех х, ïхï>M выполняется неравенство
При этом предполагается, что функция f(x) определена в окрестности бесконечности.
Записывают:
Графически можно представить:
y y
A A
0 0
x x
y y
A A
0 0
x x
Аналогично можно определить пределы для любого х>M и
для любого х<M.
Основные теоремы о пределах.
Теорема 1. , где С = const.
Следующие теоремы справедливы при предположении, что функции f(x) и g(x) имеют конечные пределы при х®а.
Теорема 2.
Теорема 3.
Следствие.
Теорема 4. при
Теорема 5. Если f(x)>0 вблизи точки х = а и , то А>0.
Аналогично определяется знак предела при f(x) < 0, f(x) ³ 0, f(x) £ 0.
Теорема 6. Если g(x) £ f(x) £ u(x) вблизи точки х = а и , то и .
Определение. Функция f(x) называется ограниченнойвблизи точки х = а, если существует такое число М>0, что ïf(x)ï<M вблизи точки х = а.
Теорема 7. Если функция f(x) имеет конечный предел при х®а, то она ограничена вблизи точки х = а.
Доказательство. Пусть , т.е. , тогда
или
, т.е.
где М = e + ïАï
Теорема доказана.
Непрерывность функции в точке.
Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точкех0, если предел функции и ее значение в этой точке равны, т.е.
Тот же факт можно записать иначе:
Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.
Пример непрерывной функции:
y
f(x0)+e
f(x0)
f(x0)-e
0 x0-D x0 x0+D x
Пример разрывной функции:
y
f(x0)+e
f(x0)
f(x0)-e
x0 x
Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию
верно неравенство .
Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.
f(x) = f(x0) + a(x)
где a(х) – бесконечно малая при х®х0.
Свойства непрерывных функций.
1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.
2) Частное двух непрерывных функций – есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.
3) Суперпозиция непрерывных функций – есть непрерывная функция.
Это свойство может быть записано следующим образом:
Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывная функция в этой точке.
Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.
Непрерывность некоторых элементарных функций.
1) Функция f(x) = C, C = const – непрерывная функция на всей области определения.
2) Рациональная функция непрерывна для всех значений х, кроме тех, при которых знаменатель обращается в ноль. Таким образом, функция этого вида непрерывна на всей области определения.
3) Тригонометрические функции sin и cos непрерывны на своей области определения.
Докажем свойство 3 для функции y = sinx.
Запишем приращение функции Dy = sin(x + Dx) – sinx, или после преобразования:
Действительно, имеется предел произведения двух функций и . При этом функция косинус – ограниченная функция при Dх®0 , а т.к.
предел функции синус , то она является бесконечно малой при Dх®0.
Таким образом, имеется произведение ограниченной функции на бесконечно малую, следовательно это произведение, т.е. функция Dу – бесконечно малая. В соответствии с рассмотренными выше определениями, функция у = sinx – непрерывная функция для любого значения х = х0 из области определения, т.к. ее приращение в этой точке – бесконечно малая величина.